Skip to main content
Log in

Vanishing viscosity limit of a conservation law regularised by a Riesz–Feller operator

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We study a nonlocal regularisation of a scalar conservation law given by a fractional derivative of order between one and two. The nonlocal operator is of Riesz–Feller type with skewness two minus its order. This equation describes the internal structure of hydraulic jumps in a shallow water model. The main purpose of the paper is the study of the vanishing viscosity limit of the Cauchy problem for this equation. First, we study the properties of the solution of the regularised problem and then we show that the difference between the regularised solution and the entropy solution of the scalar conservation law converges to zero in this limit in \(C([0,T];L^1_{loc}({\mathbb {R}}))\) for initial data in \(L^\infty ({\mathbb {R}})\), and in \(C([0,T];L^1({\mathbb {R}}))\) for initial data in \( L^\infty ({\mathbb {R}})\cap BV({\mathbb {R}})\). In order to prove these results we use weak entropy inequalities and the double scale technique of Kruzhkov. Such techniques also allow to show the \(L^1({\mathbb {R}})\) contraction of the regularised problem. For completeness, we study the behaviour in the tail of travelling wave solutions for genuinely nonlinear fluxes. These waves converge to shock waves in the vanishing viscosity limit, but decay algebraically as \(x-ct \rightarrow \infty \), rather than exponentially, the latter being a behaviour that they exhibit as \(x-ct \rightarrow - \infty \), however. Finally, we generalise the results concerning the vanishing viscosity limit to Riesz–Feller operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achleitner, F., Cuesta, C.M., Hittmeir, S.: Travelling waves for a non-local Korteweg–de Vries–Burgers equation. J. Differ. Equ. 257(3), 720–758 (2014)

    Article  MathSciNet  Google Scholar 

  2. Achleitner, F., Hittmeir, S., Schmeiser, C.: On nonlinear conservation laws with a nonlocal diffusion term. J. Differ. Equ. 250(4), 2177–2196 (2011)

    Article  MathSciNet  Google Scholar 

  3. Achleitner, F., Hittmeir, S., Schmeiser, C.: On nonlinear conservation laws regularized by a Riesz–Feller operator. In: Hyperbolic Problems: Theory, Numerics, Applications. AIMS Series on Applied Mathematics, vol. 8, pp. 241–248. Am. Inst. Math. Sci. (AIMS), Springfield (2014)

  4. Achleitner, F., Kuehn, C.: Traveling waves for a bistable equation with nonlocal diffusion. Adv. Differ. Equ. 20(9–10), 887–936 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Alibaud, N.: Entropy formulation for fractal conservation laws. J. Evol. Equ. 7(1), 145–175 (2007)

    Article  MathSciNet  Google Scholar 

  6. Alvarez-Samaniego, B., Azerad, P.: Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete Contin. Dyn. Syst. Ser. B 12(4), 671–692 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Cifani, S., Jakobsen, E.R.: Entropy solution theory for fractional degenerate convection–diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(3), 413–441 (2011)

    Article  MathSciNet  Google Scholar 

  8. Cuesta, C.M., Achleitner, F.: Addendum to “Travelling waves for a non-local Korteweg–de Vries–Burgers equation”. J. Differ. Equ. 257(3), 720–758 (2014). J. Differ. Equ. 262(2), 1155–1160 (2017)

  9. de la Hoz, F., Cuesta, C.M.: A pseudo-spectral method for a non-local KdV–Burgers equation posed on \({\mathbb{R}}\). J. Comput. Phys. 311, 45–61 (2016)

    Article  MathSciNet  Google Scholar 

  10. Droniou, J., Gallouet, T., Vovelle, J.: Global solution and smoothing effect for a non-local regularization of a hyperbolic equation. J. Evol. Equ. 3(3), 499–521 (2003). Dedicated to Philippe Bénilan

    Article  MathSciNet  Google Scholar 

  11. Droniou, J.: Vanishing non-local regularization of a scalar conservation law. Electron. J. Differ. Equ. 117, 20 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Droniou, J., Imbert, C.: Fractal first-order partial differential equations. Arch. Ration. Mech. Anal. 182(2), 299–331 (2006)

    Article  MathSciNet  Google Scholar 

  13. Endal, J., Jakobsen, E.R.: \(L^1\) contraction for bounded (nonintegrable) solutions of degenerate parabolic equations. SIAM J. Math. Anal. 46(6), 3957–3982 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics (Udine. 1996). CISM Courses and Lectures, vol. 378, pp. 223–276. Springer, Vienna (1997)

  15. Karlsen, K.H., Risebro, N.H.: On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete Contin. Dyn. Syst. 9(5), 1081–1104 (2003)

    Article  MathSciNet  Google Scholar 

  16. Kluwick, A., Cox, E.A., Exner, A., Grinschgl, C.: On the internal structure of weakly nonlinear bores in laminar high reynolds number flow. Acta Mech. 210, 135–157 (2010)

    Article  Google Scholar 

  17. Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)

    MathSciNet  Google Scholar 

  18. Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space–time fractional diffusion equation. Fract. Calc. Appl. Anal. 4(2), 153–192 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Marchaud, A.: Sur les dérivées et sur les différences des fonctions de variables réelles. Ph.D. thesis, (1927). Numdam, Thèses de l’ entre-deux-guerres, Tome 78

  20. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, vol. 6868. Cambridge University Press, Cambridge (1999). Translated from the 1990 Japanese original, Revised by the author

    Google Scholar 

  21. Serre, D.: Systems of Conservation Laws. 1. Cambridge University Press, Cambridge (1999). Hyperbolicity, entropies, shock waves. Translated from the 1996 French original by I. N. Sneddon

  22. Sugimoto, N., Kakutani, T.: “Generalized Burgers equation” for nonlinear viscoelastic waves. Wave Motion 7(5), 447–458 (1985)

    Article  MathSciNet  Google Scholar 

  23. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana, vol. 3. Springer, Berlin (2007)

    Google Scholar 

  24. Weyl, H.: Bemerkungen zum Begriff de Differentialquotienten gebrochener Ordnung. Vierteljahr. Naturforsch. Ges. Zürich 62, 296–302 (1917)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors greatly thank Franz Achleitner for helpful comments and a thorough review of the first version of the manuscript. The authors also acknowledge the financial support of the Spanish Government through the MICINNU Projects MTM2014-53145-P and PGC2018-094522-B-I00, and of the Basque Government through the Research Group Grants IT641-13 and IT1247-19. Xuban Diez-Izagirre also acknowledges the support of the Basque Government through the doctoral Grant PRE-2018-2-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuban Diez-Izagirre.

Additional information

Communicated by Ansgar Jüngel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diez-Izagirre, X., Cuesta, C.M. Vanishing viscosity limit of a conservation law regularised by a Riesz–Feller operator. Monatsh Math 192, 513–550 (2020). https://doi.org/10.1007/s00605-020-01413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01413-8

Keywords

Mathematics Subject Classification

Navigation