Skip to main content
Log in

On the initial value problem for the two-coupled Camassa–Holm system in Besov spaces

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Considered herein is the Cauchy problem for the two-coupled Camassa–Holm system. Based on the local well-posedness results for this problem, it is shown that the solution map \(z_{0}\mapsto z(t)\) of this problem in the periodic case is not uniformly continuous in Besov spaces \(B^{s}_{p,r}(\mathbb {T})\times B^{s}_{p,r}(\mathbb {T}) \) with \(s>\max \{3/2,1+1/p\}, 1\le p,r\le \infty \) by using the method of approximate solutions. In the non-periodic case, the non-uniform continuity of this solution map in Besov spaces \(B^{s}_{2,r}(\mathbb {R})\times B^{s}_{2,r}(\mathbb {R}) \) with \(s>3/2, 2\le r\le \infty \) is established. Finally, the Hölder continuity of the solution map in Besov spaces is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)

    Book  Google Scholar 

  2. Beals, R., Sattinger, D., Szmigielski, J.: Multi-peakons and a theorem of Stieltjes. Inverse Probl. 15, 1–4 (1999)

    Article  MathSciNet  Google Scholar 

  3. Boutet de Monvel, A., Kostenko, A., Shepelsky, D.: Long-time asymototics for the Camassa–Holm equation. SIAM J. Math. Anal. 41, 1559–1588 (2009)

    Article  MathSciNet  Google Scholar 

  4. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  5. Camassa, R., Holm, D., Hyman, J.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  Google Scholar 

  6. Chen, M., Liu, S., Zhang, Y.: A two-component generalization of the Camassa–Holm equation and its solutions. Lett. Math. Phys. 75, 1–15 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chen, M., Liu, Y., Zhang, P.: The Hölder continuity of the solution map to the \(b-\)family equation. Math. Ann. 357, 1245–1289 (2013)

    Article  MathSciNet  Google Scholar 

  8. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    Article  MathSciNet  Google Scholar 

  9. Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. Ser. A 457, 953–970 (2001)

    Article  MathSciNet  Google Scholar 

  10. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    Article  MathSciNet  Google Scholar 

  11. Constantin, A.: Particle trajectories in extreme solitary water waves. IMA J. Appl. Math. 77, 293–307 (2012)

    Article  MathSciNet  Google Scholar 

  12. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  13. Constantin, A., Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233, 75–91 (2000)

    Article  MathSciNet  Google Scholar 

  14. Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)

    Article  MathSciNet  Google Scholar 

  15. Constantin, A., Ivanov, R.: On an integrable two-component Camassa–Holm shallow water system. Phys. Lett. A 372, 7129–7132 (2008)

    Article  MathSciNet  Google Scholar 

  16. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis-Procesi equations. Arch. Ration Meth. Anal. 192, 165–186 (2009)

    Article  MathSciNet  Google Scholar 

  17. Constantin, A., McKean, H.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  18. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  Google Scholar 

  19. Constantin, A., Gerdjilov, V., Ivanov, R.: Inverse scattering transform for the Camassa–Holm equation. Inverse Probl. 22, 2197–2207 (2006)

    Article  MathSciNet  Google Scholar 

  20. Danchin, R.: Fourier analysis method for PDEs , Lecture Notes, 14 November, (2005)

  21. Danchin, R.: A few reamarks on the Camassa–Holm equation. Differ. Integral Equ. 14, 953–988 (2001)

    MATH  Google Scholar 

  22. Danchin, R.: A note on well-posedness for Camassa–Holm equation. J. Differ. Equ. 192, 429–444 (2003)

    Article  MathSciNet  Google Scholar 

  23. Fu, Y., Qu, C.: Well posedness and blow-up solution for a new coupled Camassa–Holm equations with peakons. J. Math. Phys. 50, 012906 (2009)

    Article  MathSciNet  Google Scholar 

  24. Fu, Y., Qu, C., Liu, Y.: Well-posedness and blow-up solution for a modified two-component periodic Camassa–Holm system with peakons. Math. Ann. 348, 415–448 (2010)

    Article  MathSciNet  Google Scholar 

  25. Fuchssteiner, B., Fokas, A.: Symplectic structures, their Bäklund transformation and hereditary symmetries. Physica D 4, 47–66 (1981)

    Article  MathSciNet  Google Scholar 

  26. Guan, C., Yin, Z.: Global existence and blow-up phenomenon for the 2-component Camassa–Holm system. J. Differ. Equ. 248, 2003–2014 (2010)

    Article  Google Scholar 

  27. Gui, G., Liu, Y.: On the global existence and wave-breaking criterion for the two-component Camassa–Holm system. J. Funct. Anal. 258, 4251–4278 (2010)

    Article  MathSciNet  Google Scholar 

  28. Gui, G., Liu, Y.: On the Cauchy problem for the two-component Camassa–Holm system. Math. Z. 268, 45–66 (2011)

    Article  MathSciNet  Google Scholar 

  29. Himonas, A., Kenig, C.: Non-uniform dependence on initial data for the CH equation on the line. Differ. Integral Equ. 22, 201–224 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Himonas, A., Misiołek, G., Ponce, G., Zhou, Y.: Persistence properties and unique continuation of solutions of the Camassa–Holm equation. Commun. Math. Phys. 271, 511–522 (2007)

    Article  MathSciNet  Google Scholar 

  31. Himonas, A., Kenig, C., Misiołek, G.: Non-uniform dependence for the periodic CH equation. Commun. Partial Differ. Equ. 35, 1145–1162 (2010)

    Article  MathSciNet  Google Scholar 

  32. Holm, D., Náralgh, L., Tronci, C.: Singular solutions of a modified two-component Camassa–Holm equation. Phys. Rev. E 79, 016601 (2009)

    Article  MathSciNet  Google Scholar 

  33. Johnson, R.: Camassa–Holm, Korteweg-deVries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    Article  MathSciNet  Google Scholar 

  34. Lenells, J.: Stability of periodic peakons. Int. Math. Res. Not. 10, 485–499 (2004)

    Article  MathSciNet  Google Scholar 

  35. Li, Y., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    Article  MathSciNet  Google Scholar 

  36. Li, J., Yin, Z.: Well-posedness and analytic solutions of the two-component Euler-Poincaré system. Monatsh Math. 183, 509–537 (2017)

    Article  MathSciNet  Google Scholar 

  37. Liu, X.: On the periodic Cauchy problem for a coupled Camassa–Holm system with peakons. Z. Angwe. Math. Phys. 67, 14 (2016). https://doi.org/10.1007/s00033-015-0608-9

    Article  MathSciNet  MATH  Google Scholar 

  38. Luo, W., Yin, Z.: Gevrey regularity and analyticity for Camassa–Holm type systems. Ann. Sc. Norm. Super. Pisa CI. Sci. XVIII((3)), 1061–1079 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Lv, G., Wang, X.: On the Cauchy problem for a two-component b-family system. Nonliear Anal. 111, 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  40. Pastrana, J.: Non-uniform dependence for Euler equations in Besov spaces, arXiv:1911.04405v1

  41. Shabat, A., Alonso, L. Martínez: On the prolongation of a hierarchy of hydrodynamic chains. In: Proceedings of the NATO Advanced Research Workshop, Cadiz, Spain 2002, NATO Science Series pp. 263–280. Kluwer Academic Publishers, Dordrecht (2004)

  42. Tang, H., Zhao, Y., Liu, Z.: A note on the solution map for the periodic Camassa–Holm equation. Appl. Anal. 93, 1745–1760 (2014)

    Article  MathSciNet  Google Scholar 

  43. Tian, L., Yan, W., Gui, G.: On the local well-posedness and blow-up solution to coupled Camassa–Holm equations in Besov spaces. J. Math. Phys. 53, 013701 (2011)

    Article  MathSciNet  Google Scholar 

  44. Yu, S., Yin, X.: The Cauchy problem for a generalized two-component short pulse system with high-order nonlinearities. J. Math. Anal. Appl. 475, 1427–1447 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Wang is supported by National Natural Science Foundation Grant-11471259 and the National Science Basic Research Program of Shaanxi(Program No. 2019JM-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiquan Wang.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chong, G. On the initial value problem for the two-coupled Camassa–Holm system in Besov spaces. Monatsh Math 193, 479–505 (2020). https://doi.org/10.1007/s00605-020-01385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01385-9

Keywords

Mathematics Subject Classification

Navigation