Skip to main content
Log in

Blow-up phenomena and local well-posedness for a generalized Camassa–Holm equation in the critical Besov space

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper we mainly study the Cauchy problem for a generalized Camassa–Holm equation in a critical Besov space. First, by using the Littlewood–Paley decomposition, transport equations theory, logarithmic interpolation inequalities and Osgood’s lemma, we establish the local well-posedness for the Cauchy problem of the equation in the critical Besov space \(B^{\frac{1}{2}}_{2,1}\). Next we derive a new blow-up criterion for strong solutions to the equation. Then we give a global existence result for strong solutions to the equation. Finally, we present two new blow-up results and the exact blow-up rate for strong solutions to the equation by making use of the conservation law and the obtained blow-up criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  2. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. 5, 1–27 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Camassa, R., Holm, D., Hyman, J.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    MATH  Google Scholar 

  6. Coclite, G.M., Karlsen, K.H.: On the well-posedness of the Degasperis–Procesi equation. J. Funct. Anal. 233, 60–91 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Constantin, A.: The Hamiltonian structure of the Camassa–Holm equation. Expo. Math. 15(1), 53–85 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. Ser. A 457, 953–970 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. l’Inst. Fourier (Grenoble) 50, 321–362 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Super. Pisa Classe Sci. 26, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Constantin, A., Escher, J.: Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Commun. Pure Appl. Math. 51, 475–504 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Constantin, A., Escher, J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 55, 949–982 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Constantin, A., Molinet, L.: Global weak solutions for a shallow water equation. Commun. Math. Phys. 211, 45–61 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Constantin, A., Strauss, W.A.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Danchin, R.: A few remarks on the Camassa–Holm equation. Differ. Integral Equ. 14, 953–988 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Danchin, R.: A note on well-posedness for Camassa–Holm equation. J. Differ. Equ. 192, 429–444 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integral equation with peakon solutions. Theor. Math. Phys. 133, 1463–1474 (2002)

    Google Scholar 

  23. Degasperis, A., Procesi, M.: Asymptotic integrability. Symmetry Perturbation Theory 1(1), 23–37 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Dullin, H.R., Gottwald, G.A., Holm, D.D.: On asymptotically equivalent shallow water wave equations. Physica D 190, 1–14 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Escher, J., Liu, Y., Yin, Z.: Global weak solutions and blow-up structure for the Degasperis–Procesi equation. J. Funct. Anal. 241, 457–485 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Escher, J., Liu, Y., Yin, Z.: Shock waves and blow-up phenomena for the periodic Degasperis–Procesi equation. Indiana Univ. Math. J. 56, 87–177 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Fokas, A., Fuchssteiner, B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D 4(1), 47–66 (1981/1982)

  28. Gui, G., Liu, Y.: On the Cauchy problem for the Degasperis–Procesi equation. Quart. Appl. Math. 69, 445–464 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Guo, Z., Liu, X., Molinet, L., Yin, Z.: Ill-posedness of the Camassa–Holm and related equations in the critical space. J. Differ. Equ. 266, 1698–1707 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Himonas, A.A., Holliman, C.: The Cauchy problem for the Novikov equation. Nonlinearity 25, 449–479 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Hone, A.N.W., Wang, J.: Integrable peakon equations with cubic nonlinearity. J. Phys. A Math. Theor. 41, 372002, 10pp (2008)

    MathSciNet  MATH  Google Scholar 

  32. Lin, B., Yin, Z.: The Cauchy problem for a generalized Camassa–Holm equation with the velocity potential. Appl. Anal. 96, 679–701 (2017)

    MathSciNet  Google Scholar 

  33. Liu, Y., Yin, Z.: Global existence and blow-up phenomena for the Degasperis–Procesi equation. Commun. Math. Phys. 267, 801–820 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Liu, Y., Yin, Z.: On the blow-up phenomena for the Degasperis–Procesi equation. Int. Math. Res. Not. IMRN 23, rnm117, 22 pp (2007)

    MathSciNet  MATH  Google Scholar 

  35. Li, J., Yin, Z.: Remarks on the well-posedness of Camassa–Holm type equations in Besov spaces. J. Differ. Equ. 261, 6125–6143 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Lundmark, H.: Formation and dynamics of shock waves in the Degasperis–Procesi equation. J. Nonlinear Sci. 17, 169–198 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Luo, W., Yin, Z.: Local well-posedness and blow-up criteria for a two-component Novikov system in the critical Besov space. Nonlinear Anal. Theory Methods Appl. 122, 1–22 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Novikov, V.: Generalization of the Camassa–Holm equation. J. Phys. A 42, 342002, 14pp (2009)

    MathSciNet  MATH  Google Scholar 

  39. Rodríguez-Blanco, G.: On the Cauchy problem for the Camassa–Holm equation. Nonlinear Anal. Theory Methods Appl. 46, 309–327 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Toland, J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)

    MathSciNet  MATH  Google Scholar 

  41. Wu, X., Yin, Z.: Global weak solutions for the Novikov equation. J. Phys. A Math. Theor. 44, 055202, 17pp (2011)

    MathSciNet  MATH  Google Scholar 

  42. Wu, X., Yin, Z.: Well-posedness and global existence for the Novikov equation. Ann. Sc. Norm. Super. Pisa Classe Sci. Ser. V 11, 707–727 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Wu, X., Yin, Z.: A note on the Cauchy problem of the Novikov equation. Appl. Anal. 92, 1116–1137 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Xin, Z., Zhang, P.: On the weak solutions to a shallow water equation. Commun. Pure Appl. Math. 53, 1411–1433 (2000)

    MathSciNet  MATH  Google Scholar 

  45. Yan, W., Li, Y., Zhang, Y.: The Cauchy problem for the integrable Novikov equation. J. Differ. Equ. 253, 298–318 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Yan, W., Li, Y., Zhang, Y.: The Cauchy problem for the Novikov equation. Nonlinear Differ. Equ. Appl. NoDEA 20, 1157–1169 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Yin, Z.: On the Cauchy problem for an integrable equationwith peakon solutions. Ill. J. Math. 47, 649–666 (2003)

    MATH  Google Scholar 

  48. Yin, Z.: Global existence for a new periodic integrable equation. J. Math. Anal. Appl. 283, 129–139 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Yin, Z.: Global weak solutions to a new periodic integrable equation with peakon solutions. J. Funct. Anal. 212, 182–194 (2004)

    MathSciNet  MATH  Google Scholar 

  50. Yin, Z.: Global solutions to a new integrable equation with peakons. Indiana Univ. Math. J. 53, 1189–1210 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NNSFC (No. 11671407 and No. 11801076), FDCT (No. 0091/2018/A3), Guangdong Special Support Program (No. 8-2015) and the key project of NSF of Guangdong Province (No. 2016A030311004). The authors thank the referee for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang Yin.

Additional information

Communicated by Joachim Escher.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, X., Yin, Z. Blow-up phenomena and local well-posedness for a generalized Camassa–Holm equation in the critical Besov space. Monatsh Math 191, 801–829 (2020). https://doi.org/10.1007/s00605-020-01371-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01371-1

Keywords

Mathematics Subject Classification

Navigation