Skip to main content
Log in

A primality test for \(4Kp^n-1\) numbers

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We present a Lucasian type primality test, not explicitly based on Lucas sequences, for numbers written in the form \(N=4Kp^n-1\). This test is a generalization of the classical Lucas–Lehmer test for Mersenne numbers using as underlying group \(\mathcal {G}_N:=\{z \in (\mathbb {Z}/N\mathbb {Z})[i]: z\overline{z} \equiv 1 \pmod N\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berrizbeitia, P., Berry, T.G.: Cubic reciprocity and generalised Lucas–Lehmer tests for primality of \(A\cdot 3^n\pm 1\). Proc. Am. Math. Soc. 127(7), 1923–1925 (1999)

    Article  Google Scholar 

  2. Berrizbeitia, P., Berry, T.G.: Biquadratic reciprocity and a Lucasian primality test. Math. Comput. 73(247), 1559–1564 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bosma, W.: Cubic reciprocity and explicit primality tests for \(h\cdot 3^k\pm 1\). In: van der Poorten, A., Stein, A. (eds.) High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, volume 41 of Fields Inst. Commun., pp. 77–89. American Mathematical Society, Providence, RI (2004)

  4. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective, 2nd edn. Springer, New York (2005)

    MATH  Google Scholar 

  5. Deng, Y., Lv, C.: Primality test for numbers of the form \(Ap^n+w_ n\). J. Discret. Algorithms 33, 81–92 (2015)

    Article  Google Scholar 

  6. Deng, Y., Huang, D.: Explicit primality criteria for \(h \cdot 2^n \pm 1\). Journal de Theorie des Nombres de Bordeaux 28(1), 55–74 (2016)

    Article  MathSciNet  Google Scholar 

  7. GIMPS, GreatInternet Mersenne Prime Search. Founded by G. Woltman. https://www.mersenne.org. Accessed 1 Nov 2019

  8. Grau, J.M., Oller-Marcén, A.M., Sadornil, D.: A primality test for \(Kp^n+1\) numbers. Math. Comput. 84(291), 505–512 (2015)

    Article  Google Scholar 

  9. Grau, J.M., Oller-Marcén, A.M., Sadornil, D.: Fermat test with Gaussian base and Gaussian pseudoprimes. Czechoslov. Math. J. 65(140), 969–982 (2015)

    Article  MathSciNet  Google Scholar 

  10. Koval, A.: Algorithm for Gaussian integer exponentiation. In: Latifi, S. (ed.) Information Technology: New Generations. Advances in Intelligent Systems and Computing, vol. 448, pp. 1075–1085. Springer, Berlin (2016)

    Google Scholar 

  11. Lehmer, D.H.: An extended theory of Lucas’ functions. Ann. Math. Second Ser. 31(3), 419–448 (1930)

    Article  MathSciNet  Google Scholar 

  12. Lemmermeyer, F.: Conics—a poor man’s elliptic curves. arXiv:math/0311306v1, preprint at http://www.fen.bilkent.edu.tr/franz/publ/conics.pdf

  13. Lucas, E.: Théorie des fonctions numériques simplement périodiques. Am. J. Math. Pure Appl. 1(184–239), 289–321 (1878)

    Google Scholar 

  14. Riesel, H.: Lucasian criteria for the primality of \(N = h\cdot 2^n - 1\). Math. Comput. 23(108), 869–875 (1969)

    MATH  Google Scholar 

  15. Rödseth, O.J.: A note on primality tests for \(N=h\cdot 2^n-1\). BIT 34(3), 451–454 (1994)

    Article  MathSciNet  Google Scholar 

  16. Roettger, E.L., Williams, H.C., Guy, R.K.: Some primality tests that eluded Lucas. Des. Codes Cryptogr. 77, 515–539 (2015)

    Article  MathSciNet  Google Scholar 

  17. Sadovnik, E.V.: Testing numbers of the form \(N = 2kp^m - 1\) for primality. Discret. Math. Appl. 16(2), 99–108 (2006)

    Article  MathSciNet  Google Scholar 

  18. Schönhage, A., Strassen, V.: Schnelle multiplikation grosser zahlen. Computing (Arch. Elektron. Rechnen) 7, 281–292 (1971)

    MathSciNet  MATH  Google Scholar 

  19. Stechkin, S.B.: Lucas’s criterion for the primality of numbers of the form \(N = h2^n-1\). Math. Notes Acad. Sci. USSR 10(3), 578–584 (1971)

    MATH  Google Scholar 

  20. Stein, A., Williams, H.C.: Explicit primality criteria for \((p-1)p^n-1\). Math. Comput. 69(232), 1721–1734 (2000)

    Article  Google Scholar 

  21. Sun, Z.-H.: Primality tests for numbers of the form \(K\cdot 2^m \pm 1\). Fibonacci Q. 44(2), 121–130 (2006)

    Google Scholar 

  22. Williams, H.C.: The primality of certain integers of the form \(2Ar^n-1\). Acta Arith. 39(1), 7–17 (1981)

    Article  MathSciNet  Google Scholar 

  23. Williams, H.C.: Édouard Lucas and Primality Testing. Wiley, New York (1998)

    MATH  Google Scholar 

  24. Williams, H.C., Zarnke, C.R.: Some prime numbers of the forms \(2A3^{n}+1\) and \(2A3^{n}-1\). Math. Comput. 26, 995–998 (1972)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees for their many insightful comments and suggestions that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Oller-Marcén.

Additional information

Communicated by Ilse Fischer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Daniel Sadornil is partially supported by the Spanish Government under projects MTM2014-55421-P and MTM2017-83271-R.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grau, J.M., Oller-Marcén, A.M. & Sadornil, D. A primality test for \(4Kp^n-1\) numbers. Monatsh Math 191, 93–101 (2020). https://doi.org/10.1007/s00605-019-01354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-019-01354-x

Keywords

Mathematics Subject Classification

Navigation