Skip to main content
Log in

Metric theorems for continued \(\beta \)-fractions

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Let \(\beta >1\) be a root of the polynomial \(t^2=a t+1\) with \(a\in {\mathbb {N}}, a\ge 1\) or a root of the polynomial \(t^2=a t-1\) with \(a\in {\mathbb {N}}, a\ge 3\). In this paper, we consider the metric properties of the continued \(\beta \)-fractions. We show that the Lebesgue measure of the following set

$$\begin{aligned} E(\varphi )=\big \{x\in [0,1): a_n(x)\ge \varphi (n)\; \text {for infinitely many}\;n\in {\mathbb {N}}\big \} \end{aligned}$$

is null or full according to the convergence or divergence of the series \(\sum _{n=1}^{\infty }\frac{1}{\varphi (n)}\), where \(a_n(x)\) is the n-th partial quotients in the continued \(\beta \)-fraction expansion of x and \(\varphi \) is a postive function defined on \({\mathbb {N}}\). As a result, the set of numbers in the interval [0, 1) with bounded partial quotients in their continued \(\beta \)-fraction expansions is of zero Lebesgue measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balková, L., Gazeau, J.-P., Pelantová, E.: Asymptotic behavior of beta-integers. Lett. Math. Phys 84(2–3), 179–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beresnevich, V., Ramírez, F., Velani, S.: Metric Diophantine approximation: aspects of recent work. In: Dynamics and analytic number theory. Badziahin, D., Gorodnik, A., Peyerimhoff, N. (eds.) London Mathematical Society Lecture Note Series, vol. 437, pp. 1–95. Cambridge University Press, Cambridge (2016)

  3. Bernat, J.: Continued fractions and numeration in the Fibonacci base. Discrete Math. 306, 2828–2850 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertrand-Mathis, A.: Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris Sér. A-B 285(6), A419–A421 (1977)

    MathSciNet  Google Scholar 

  5. Bertrand-Mathis, A.: Comment écrire les nombres entiers dans une base qui n’est pas entière. Acts Math. Acad. Sci. Hungar. 54, 237–241 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burdík, C̆., Frougny, Ch., Gazeau, J.P., Krejcar, R.: Beta-integers as natural counting systems for quasicrystals. J. Phys. A 31(30), 6449–6472 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burdík, Č., Frougny, C., Gazeau, J.P., Krejcar, R.: Beta-integers as a group. In: Gambaudo, J.-M., Hubert, P., Tisseur, P., Vaienti, S. (eds.) Dynamical Systems (Luminy-Marseille, 1998), vol. 473, pp. 125–136. World Scientific Publishing, River Edge, NJ (2000)

    Chapter  Google Scholar 

  8. Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers. Carus Mathematical Monographs, 29. Mathematical Association of America, Washington (2002)

    MATH  Google Scholar 

  9. Einsiedler, M., Ward, T.: Ergodic Theory with a View Towards Number Theory. Graduate Texts in Mathematics, 259. Springer, London (2011)

    MATH  Google Scholar 

  10. Fang, L.-L., Wu, M., Li, B.: Limit theorems related to beta-expansion and continued fraction expansion. J. Number Theory 163, 385–405 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gazeau, J.-P., Verger-Gaugry, J.-L.: Diffraction spectra of weighted Delone sets on beta-lattices with beta a quadratic unitary Pisot number. Numération, pavages, substitutions. Ann. Inst. Fourier (Grenoble) 56(7), 2437–2461 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jarník, I.: Zur metrischen Theorie der diophantischen Appoximationen. Prace Mat.-Fiz. 36 , 91–106 (1928–1929)

  13. Jellali, M., Mkaouar, M., Scheicher, K., Thuswaldner, J.: Beta-continued fractions over Laurent series. Publ. Math. Debrecen 77(3–4), 443–463 (2010)

    MathSciNet  Google Scholar 

  14. Khintchine, A.Ya.: Continued Fractions. University of Chicago Press, Chicago (1964)

    MATH  Google Scholar 

  15. Li, B., Wu, J.: Beta-expansion and continued fraction expansion. J. Math. Anal. Appl. 339(2), 1322–1331 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Parry, W.: On the \(\beta \)-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11, 401–416 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hun Rengar. 8, 477–493 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rockett, A., Szüsz, P.: Continued Fractions. World Scientific Publishing Co., Inc., River Edge, x+188 pp (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuailing Wang.

Additional information

Communicated by H. Bruin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Science and Technology Development Fund of Macau (No. 069/2011/A and 0024/2018/A1), NSFC 11801182, 11811530269, Guangdong Natural Science Foundation 2017A030310164 and China Postdoctoral Science Foundation 2018M643061.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Ma, C. & Wang, S. Metric theorems for continued \(\beta \)-fractions. Monatsh Math 190, 281–299 (2019). https://doi.org/10.1007/s00605-019-01305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-019-01305-6

Keywords

Mathematics Subject Classification

Navigation