Skip to main content
Log in

On coarse geometric aspects of Hilbert geometry

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We begin a coarse geometric study of Hilbert geometry. Actually we give a necessary and sufficient condition for the natural boundary of a Hilbert geometry to be a corona, which is a nice boundary in coarse geometry. In addition, we show that any Hilbert geometry is uniformly contractible and with coarse bounded geometry. As a consequence of these we see that the coarse Novikov conjecture holds for a Hilbert geometry with a mild condition. Also we show that the asymptotic dimension of any two-dimensional Hilbert geometry is just two. This implies that the coarse Baum–Connes conjecture holds for any two-dimensional Hilbert geometry via Yu’s theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bell, G., Dranishnikov, A.: Asymptotic dimension (English summary). Topol. Appl. 155(12), 1265–1296 (2008)

    Article  Google Scholar 

  2. Bredon, G.E.: Topology and Geometry. Springer, New York (1997)

    MATH  Google Scholar 

  3. Bridson, M., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Springer, Berlin (1999)

    Book  Google Scholar 

  4. Busemann, H.: The Geometry of Geodesics. Academic Press Inc., New York (1955)

    MATH  Google Scholar 

  5. de la Harpe, P.: On Hilbert’s metric for simplices. In: Niblo, G.A., Roller, M.A. (eds.) Geometric Group Theory, vol. 1, pp. 97–119 (Sussex, 1991). Cambridge University Press (1993)

  6. Emerson, H., Meyer, R.: Dualizing the coarse assembly map. J. Inst. Math. Jussieu 5, 161–186 (2006)

    Article  MathSciNet  Google Scholar 

  7. Fukaya, T., Oguni, S.: Coronae of relatively hyperbolic groups and coarse cohomologies. J. Topol. Anal. 8(3), 431–474 (2016)

    Article  MathSciNet  Google Scholar 

  8. Fukaya, T., Oguni, S.: The coarse Baum–Connes conjecture for Busemann nonpositively curved spaces. Kyoto J. Math. 56(1), 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  9. Higson, N., Roe, J.: On the coarse Baum–Connes conjecture, Novikov conjectures, index theorems and rigidity, vol. 2 (Oberwolfach, 1993), pp. 227–254. London Math. Soc. Lecture Note Ser., 227. Cambridge University Press, Cambridge (1995)

  10. Higson, N., Roe, J.: Analytic K-Homology. Oxford Mathematical Monograph. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  11. Karlsson, A., Noskov, G.A.: The Hilbert metric and Gromov hyperbolicity. Enseign. Math. 48, 73–89 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Kelly, P.J., Straus, E.: Curvature in Hilbert geometries. Pac. J. Math. 8, 119–125 (1958)

    Article  MathSciNet  Google Scholar 

  13. Nowak, P.W., Yu, G.: Large Scale Geometry. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2012)

    Book  Google Scholar 

  14. Papadopoulos, A.: Metric Spaces, Convexity, and Nonpositive Curvature. European Mathematical Society, Zürich (2005)

    MATH  Google Scholar 

  15. Papadopoulos, A., Troyanov, M.: Handbook of Hilbert geometry. In: IRMA Lect. Math. Theor. Phys. 22. European Mathematical Society, Zürich (2014)

  16. Roe, J.: Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Am. Math. Soc. 104(497), x+90 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Roe, J.: Lectures on Coarse Geometry, University Lecture Series, vol. 31, p. viii+175 . American Mathematical Society, Providence, RI (2003)

  18. Vernicos, C.: Lipschitz characterisation of polytopal Hilbert geometries. Osaka J. Math. 52(1), 215–235 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Willett, R.: Band-dominated operators and the stable Higson corona. Ph.D. thesis, Penn State (2009)

  20. Wright, N.: Simultaneous metrizability of coarse spaces. Proc. Am. Math. Soc. 139(9), 3271–3278 (2011)

    Article  MathSciNet  Google Scholar 

  21. Yu, G.: Coarse Baum–Connes conjecture. K-Theory 9(3), 199–221 (1995)

    Article  MathSciNet  Google Scholar 

  22. Yu, G.: The Novikov conjecture for groups with finite asymptotic dimension. Ann. Math. (2) 147(2), 325–355 (1998)

    Article  MathSciNet  Google Scholar 

  23. Yu, G.: The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139(1), 201–240 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Mineyama.

Additional information

Communicated by A. Constantin.

R. Mineyama: partly supported by Grant-in-Aid for JSPS Fellows No. 13J01771. S. Oguni: partly supported by JSPS Grant-in-Aid for Young Scientists (B) Nos. 24740045, 16K17595.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mineyama, R., Oguni, Si. On coarse geometric aspects of Hilbert geometry. Monatsh Math 187, 665–680 (2018). https://doi.org/10.1007/s00605-018-1171-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-018-1171-1

Keywords

Mathematics Subject Classification

Navigation