Skip to main content
Log in

The \(\alpha \)-modulation transform: admissibility, coorbit theory and frames of compactly supported functions

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The \(\alpha \)-modulation transform is a time-frequency transform generated by square-integrable representations of the affine Weyl–Heisenberg group modulo suitable subgroups. In this paper we prove new conditions that guarantee the admissibility of a given window function. We also show that the generalized coorbit theory can be applied to this setting, assuming specific regularity of the windows. This then yields canonical constructions of Banach frames and atomic decompositions in \(\alpha \)-modulation spaces. In particular, we prove the existence of compactly supported (in time domain) vectors that are admissible and satisfy all conditions within the coorbit machinery, which considerably go beyond known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: Square integrability of group representations on homogeneous spaces. I. Reproducing triples and frames. Ann. Inst. Henri Poincaré Phys. Théor. 33(4), 829–855 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: Square integrability of group representations on homogeneous spaces. II. Coherent and quasi-coherent states. The case of the Poincaré group. Ann. Inst. Henri Poincaré Phys. Théor. 33(4), 857–890 (1991)

    MATH  Google Scholar 

  3. Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: Continuous frames in Hilbert spaces. Ann. Phys. 222, 1–37 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balazs, P.: Matrix representation of operators using frames. Sampl. Theory Signal Image Process. 7(1), 39–54 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Borup, L.: Pseudodifferential operators on \(\alpha \)-modulation spaces. J. Funct. Spaces Appl. 2(2), 107–123 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casazza, P.: The art of frame theory. Taiwan. J. Math. 4(2), 129–202 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comput. 70(233), 27–75 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods II: beyond the elliptic case. J. Found. Comput. Math. 2(3), 203–245 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dahlke, S., Fornasier, M., Raasch, T., Stevenson, R., Werner, M.: Adaptive frame methods for elliptic operator equations: the steepest descent approach. IMA J. Numer. Anal. 27(4), 717–740 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dahlke, S., Fornasier, M., Rauhut, H., Steidl, G., Teschke, G.: Generalized coorbit theory, Banach frames, and the relation to \(\alpha \)-modulation spaces. Proc. Lond. Math. Soc. 96(2), 464–506 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dahlke, S., Steidl, G., Teschke, G.: Coorbit spaces and Banach frames on homogeneous spaces with applications to the sphere. Adv. Comput. Math. 21(1), 147–180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dahlke, S., Steidl, G., Teschke, G.: Shearlet coorbit spaces: compactly supported analyzing shearlets, traces and embeddings. J. Fourier Anal. Appl. 17(6), 1232–1255 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dahlke, S., Steidl, G., Teschke, G.: Weighted coorbit spaces and Banach frames on homogeneous spaces. J. Fourier Anal. Appl. 10(5), 507–539 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Dahlke, S., Teschke, G., Stingl, K.: Coorbit theory, multi-\(\alpha \)-modulation frames and the concept of joint sparsity for medical multi-channel data analysis. EURASIP J. Adv. Sig. Proc. (2008). Article ID 471601

  15. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992)

    Google Scholar 

  16. Feichtinger, H.G., Gröbner, P.: Banach spaces of distributions defined by decomposition methods I. Math. Nachr. 123(1), 97–120 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feichtinger, H.G., Gröchenig, K.: A unified approach to atomic decompositions via integrable group representations. In: Cwikel, Peetre, Sagher, Wallin (eds.) Function Spaces and Applications. Lecture Notes in Mathematics, vol. 1302, pp. 52–73. Springer, Berlin (1988)

  18. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions I. J. Funct. Anal. 86(2), 307–340 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions II. Monatsh. Math. 108(2), 129–148 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms—Theory and Applications. Birkhäuser, Boston (1998)

    Book  MATH  Google Scholar 

  21. Folland, G.B.: A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  22. Fornasier, M.: Banach frames for \(\alpha \)-modulation spaces. Appl. Comput. Harmon. Anal. 22(2), 157–175 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fornasier, M., Gröchenig, K.: Intrinsic localization of frames. Constr. Approx. 22(3), 395 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fornasier, M., Rauhut, H.: Continuous frames, function spaces, and the discretization problem. J. Fourier Anal. Appl. 11(3), 244–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gaul, L., Kögler, M., Wagner, M.: Boundary Element Methods for Engineers and Scientists. Springer, Berlin (2003)

    Book  Google Scholar 

  26. Gröbner, P.: Banachräume glatter Funktionen und Zerlegungsmethoden. Ph.D. Thesis, University of Vienna (1992)

  27. Grossmann, A., Morlet, J., Paul, T.: Transforms associated to square integrable group representations. Ann. Inst. Henri Poincaré 45, 293–309 (1986)

    MathSciNet  MATH  Google Scholar 

  28. Han, J., Wang, B.: \(\alpha \)-modulation spaces (I) scaling, embedding and algebraic properties. J. Math. Soc. Jpn. 66(4), 1315–1373 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Harbrecht, H., Schneider, R., Schwab, C.: Multilevel frames for sparse tensor product spaces. Numer. Math. 110(2), 199–220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Holighaus, N., Wiesmeyr, C., Balazs, P.: Construction of warped time-frequency representations on nonuniform frequency scales, part II: integral transforms, function spaces, atomic decompositions and Banach frames. Preprint (2014)

  31. Nazaret, B., Holschneider, M.: An interpolation family between Gabor and wavelet transformations: application to differential calculus and construction of anisotropic Banach spaces. In: Albeverio, S., Demuth, M., Schrohe, E., Schulze, B.-W. (eds.) Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations, Adv. Part. Diff. Eq, pp. 363–394. Birkhäuser, Basel (2003)

    Chapter  Google Scholar 

  32. Nielsen, M.: Frames for decomposition spaces generated by a single function. Collect. Math. 65(2), 183–201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Päivärinta, L., Somersalo, E.: A generalization of the Calderon–Vaillancourt theorem to \({L}^p\) and \(h^p\). Math. Nachr. 138(1), 145–156 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rahimi, A., Najati, A., Dehghan, Y.N.: Continuous frames in Hilbert spaces. Methods Funct. Anal. Topol. 12(2), 170–182 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Speckbacher, M., Balazs, P.: Reproducing pairs and the continuous nonstationary gabor transform on LCA groups. J. Phys. A: Math. Theor. 48, 395201 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stevenson, R.: Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 41(3), 1074–1100 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Torrésani, B.: Wavelets associated with representations of the Weyl–Heisenberg group. J. Math. Phys. 32(5), 1273–1279 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Torrésani, B.: Time-frequency representations: wavelet packets and optimal decomposition. Ann. l’Inst. Henri Poincaré 56(2), 215–234 (1992)

    MathSciNet  MATH  Google Scholar 

  39. Voigtländer, F.: Structured, compactly supported Banach frame decompositions of decomposition spaces (2016). arXiv:1612.08772

  40. Wong, M.-W.: Wavelet Transforms and Localization Operators. Operator Theory: Advances and Applications, vol. 136. Birkhäuser, Basel (2002)

    Book  Google Scholar 

Download references

Acknowledgements

This work was funded by the Austrian Science Fund (FWF) DACH-Project BIOTOP(‘Adaptive Wavelet and Frame techniques for acoustic BEM’; I-1018-N25), by the FWF START-Project FLAME (‘Frames and Linear Operators for Acoustical Modeling and Parameter Estimation’; Y 551-N13) and the DFG Project Number DA 360/19-1. We would like to thank all the Project members for valuable discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Speckbacher.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speckbacher, M., Bayer, D., Dahlke, S. et al. The \(\alpha \)-modulation transform: admissibility, coorbit theory and frames of compactly supported functions. Monatsh Math 184, 133–169 (2017). https://doi.org/10.1007/s00605-017-1085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-017-1085-3

Keywords

Mathematics Subject Classification

Navigation