Skip to main content
Log in

Orthogonal polynomials and Smith normal form

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Smith normal form evaluations found by Bessenrodt and Stanley for some Hankel matrices of q-Catalan numbers are proven in two ways. One argument generalizes the Bessenrodt–Stanley results for the Smith normal form of a certain multivariate matrix that refines one studied by Berlekamp, Carlitz, Roselle, and Scoville. The second argument, which uses orthogonal polynomials, generalizes to a number of other Hankel matrices, Toeplitz matrices, and Gram matrices. It gives new results for q-Catalan numbers, q-Motzkin numbers, q-Schröder numbers, q-Stirling numbers, q-matching numbers, q-factorials, q-double factorials, as well as generating functions for permutations with eight statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berlekamp, E.R.: A class of convolution codes. Inf. Control 6, 1–13 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berlekamp, E.: Unimodular arrays. Comput. Math. Appl. 39, 77–88 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bessenrodt, C., Stanley, R.P.: Smith normal form of a multivariate matrix associated with partitions. J. Algebraic Comb. 41, 73–82 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlitz, L., Roselle, D.P., Scoville, R.A.: Some remarks on ballot-type sequences of positive integers. J. Comb. Theor. Ser. A 11, 258–271 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chihara, T.S.: An introduction to orthogonal polynomials. Mathematics and its Applications, vol. 13. Gordon and Breach Science Publishers, New York (1978)

    MATH  Google Scholar 

  6. Corteel, S., Kim, J.S., Stanton, D.: Moments of orthogonal polynomials and combinatorics. In: Beveridge, A., Griggs, J.R., Hogben, L., Musiker, G., Tetali, P. (eds.) Recent Trends in Combinatorics. The IMA Volumes in Mathematics and its Applications, vol. 159, pp. 545–578, Springer, Switzerland (2016)

  7. Dahab, R.: The Birkhoff–Lewis equations. Ph.D. thesis, University of Waterloo (1993)

  8. de Médicis, A., Stanton, D., White, D.: The combinatorics of \(q\)-Charlier polynomials. J. Comb. Theor. Ser. A 69, 87–114 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Francesco, P., Golinelli, O., Guitter, E.: Meanders and the Temperley-Lieb algebra. Comm. Math. Phys. 186, 1–59 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ismail, M.E.H., Stanton, D., Viennot, G.: The combinatorics of \(q\)-Hermite polynomials and the Askey–Wilson integral. Eur. J. Comb. 8, 379–392 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kamioka, S.: A combinatorial representation with Schröder paths of biorthogonality of Laurent biorthogonal polynomials. Electron. J. Comb. 14, R37 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Kasraoui, A., Stanton, D., Zeng, J.: The combinatorics of Al-Salam-Chihara \(q\)-Laguerre polynomials. Adv. Appl. Math. 47, 216–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kim, D., Stanton, D., Zeng, J.: The combinatorics of the Al-Salam–Chihara \(q\)-Charlier polynomials. Sém. Lothar. Comb.54 (2005/07), 15 pp

  14. Ko, K.H., Smolinsky, L.: A combinatorial matrix in 3-manifold theory. Pacific J. Math. 149, 319–336 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krattenthaler, C.: Advanced determinant calculus. Sém. Lothar. Comb. 42, B42q (1999)

    MathSciNet  MATH  Google Scholar 

  16. Krattenthaler, C.: Advanced determinant calculus: a complement. Linear Algebra Appl. 411, 68–166 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lickorish, W.B.R.: Invariants for 3-manifolds from the combinatorics of the Jones polynomial. Pacific J. Math. 149, 337–347 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lindström, B.: Determinants on semilattices. Proc. Am. Math. Soc. 20, 207–208 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  19. Miller, A.R., Reiner, V.: Differential posets and Smith normal forms. Order 26, 197–228 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Simion, R., Stanton, D.: Specializations of generalized Laguerre polynomials. SIAM J. Math. Anal. 25, 712–719 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Simion, R., Stanton, D.: Octabasic Laguerre polynomials and permutation statistics. J. Comput. Appl. Math. 68, 297–329 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stanley, R.P.: Smith normal form in combinatorics. J. Comb. Theor. Ser. A 144, 476–495 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stanley, R.P.: The Smith normal form of a specialized Jacobi-Trudi matrix. Eur. J. Comb. 62, 178–182 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Viennot, G.: Une théorie combinatoire des polynômes orthogonaux généraux. Lecture notes, Univ. Quebec, Montreal, Quebec. http://www.xavierviennot.org/xavier/livres.html (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Stanton.

Additional information

Communicated by A. Constantin.

A. R. Miller was supported in part by the Fondation Sciences Mathématiques de Paris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, A.R., Stanton, D. Orthogonal polynomials and Smith normal form. Monatsh Math 187, 125–145 (2018). https://doi.org/10.1007/s00605-017-1082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-017-1082-6

Keywords

Mathematics Subject Classification

Navigation