Skip to main content
Log in

Dimensions of fibers of generic continuous maps

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In an earlier paper Buczolich, Elekes, and the author described the Hausdorff dimension of the level sets of a generic real-valued continuous function (in the sense of Baire category) defined on a compact metric space K by introducing the notion of topological Hausdorff dimension. Later on, the author extended the theory for maps from K to \({\mathbb {R}}^n\). The main goal of this paper is to generalize the relevant results for topological and packing dimensions and to obtain new results for sufficiently homogeneous spaces K even in the case case of Hausdorff dimension. Let K be a compact metric space and let us denote by \(C(K,{\mathbb {R}}^n)\) the set of continuous maps from K to \({\mathbb {R}}^n\) endowed with the maximum norm. Let \(\dim _{*}\) be one of the topological dimension \(\dim _T\), the Hausdorff dimension \(\dim _H\), or the packing dimension \(\dim _P\). Define

$$\begin{aligned} d_{*}^n(K)=\inf \left\{ \dim _{*}(K{\setminus } F): F\subset K \text { is } \sigma \text {-compact with } \dim _T F<n\right\} . \end{aligned}$$

We prove that \(d^n_{*}(K)\) is the right notion to describe the dimensions of the fibers of a generic continuous map \(f\in C(K,{\mathbb {R}}^n)\). In particular, we show that \(\sup \{\dim _{*}f^{-1}(y): y\in {\mathbb {R}}^n\} =d^n_{*}(K)\) provided that \(\dim _T K\ge n\), otherwise every fiber is finite. Proving the above theorem for packing dimension requires entirely new ideas. Moreover, we show that the supremum is attained on the left hand side of the above equation. Assume \(\dim _T K\ge n\). If K is sufficiently homogeneous, then we can say much more. For example, we prove that \(\dim _{*}f^{-1}(y)=d^n_{*}(K)\) for a generic \(f\in C(K,{\mathbb {R}}^n)\) for all \(y\in {{\mathrm{int}}}f(K)\) if and only if \(d^n_{*}(U)=d^n_{*}(K)\) or \(\dim _T U<n\) for all open sets \(U\subset K\). This is new even if \(n=1\) and \(\dim _{*}=\dim _H\). It is known that for a generic \(f\in C(K,{\mathbb {R}}^n)\) the interior of f(K) is not empty. We augment the above characterization by showing that \(\dim _T \partial f(K)=\dim _H \partial f(K)=n-1\) for a generic \(f\in C(K,{\mathbb {R}}^n)\). In particular, almost every point of f(K) is an interior point. In order to obtain more precise results, we use the concept of generalized Hausdorff and packing measures, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alexandroff, P.: Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen. Math. Ann. 106, 161–238 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balka, R.: Inductive topological Hausdorff dimensions and fibers of generic continuous functions. Monatsh. Math. 174(1), 1–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balka, R., Buczolich, Z., Elekes, M.: Topological Hausdorff dimension and level sets of generic continuous functions on fractals. Chaos Solitons Fractals 45(12), 1579–1589 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balka, R., Buczolich, Z., Elekes, M.: A new fractal dimension: the topological Hausdorff dimension. Adv. Math. 274, 881–927 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balka, R., Farkas, Á., Fraser, J.M., Hyde, J.T.: Dimension and measure for generic continuous images. Ann. Acad. Sci. Fenn. Math. 38, 389–404 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bishop, C.J., Peres, Y.: Fractals in Probability and Analysis. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  7. Engelking, R.: Dimension Theory. North-Holland Publishing Company, Amsterdam (1978)

    MATH  Google Scholar 

  8. Engelking, R.: Theory of Dimension Finite and Infinite. Heldermann, Berlin (1995)

    MATH  Google Scholar 

  9. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, Hoboken (2003)

    Book  MATH  Google Scholar 

  10. Haase, H.: Non-\(\sigma \)-finite sets for packing measure. Mathematika 33(1), 129–136 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Howroyd, J.D.: On Hausdorff and packing dimension of product spaces. Math. Proc. Camb. Philos. Soc. 119(4), 715–727 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Humke, P.D., Petruska, G.: The packing dimension of a typical continuous function is \(2\). Real Anal. Exch. 14, 345–358 (1988–89)

  13. Hurewicz, W., Wallman, H.: Dimension Theory. Princeton University Press, Princeton (1948)

    MATH  Google Scholar 

  14. Hyde, J.T., Laschos, V., Olsen, L., Petrykiewicz, I., Shaw, A.: On the box dimensions of graphs of typical functions. J. Math. Anal. Appl. 391, 567–581 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kechris, A.S.: Classical Descriptive Set Theory. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  16. Kirchheim, B.: Hausdorff measure and level sets of typical continuous mappings in Euclidean spaces. Trans. Am. Math. Soc. 347(5), 1763–1777 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kato, H.: Higher-dimensional Bruckner–Garg type theorem. Topol. Appl. 154(8), 1690–1702 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuratowski, K.: Topology II. Academic Press, New York (1968)

    Google Scholar 

  19. Liu, J., Tan, B., Wu, J.: Graphs of continuous functions and packing dimension. J. Math. Anal. Appl. 435(2), 1099–1106 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  21. Mattila, P., Mauldin, R.D.: Measure and dimension functions: measurability and densities. Math. Proc. Camb. Philos. Soc. 121(1), 81–100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mauldin, R.D., Williams, S.C.: On the Hausdorff dimension of some graphs. Trans. Am. Math. Soc. 298, 793–803 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Oxtoby, J.C.: The Banach-Mazur game and Banach’s category theorem. In: Dresher, M., Tucker, A.W., Wolfe, P. (eds.) Contributions to the Theory of Games. Annals of Mathematics Studies, vol. 39, pp. 159–163. Princeton University Press, Princeton (1957)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Zoltán Buczolich and Márton Elekes for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richárd Balka.

Additional information

Communicated by A. Constantin.

Supported by the National Research, Development and Innovation Office—NKFIH, 104178.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balka, R. Dimensions of fibers of generic continuous maps. Monatsh Math 184, 339–378 (2017). https://doi.org/10.1007/s00605-017-1067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-017-1067-5

Keywords

Mathematics Subject Classification

Navigation