Monatshefte für Mathematik

, Volume 183, Issue 2, pp 269–302 | Cite as

On the Oseen–Brinkman flow around an \((m-1)\)-dimensional solid obstacle

  • Mirela Kohr
  • Dagmar MedkováEmail author
  • W. L. Wendland


The purpose of this paper is to develop a layer potential analysis in order to show the well-posedness result of a transmission problem for the Oseen and Brinkman systems in open sets in \({\mathbb R}^m\) (\(m\in \{2,3\}\)) with compact Lipschitz boundaries and around a lower dimensional solid obstacle, when the boundary data belong to some \(L^q\)-spaces. If \(m=3\) or if the Brinkman system is given on bounded open set then there exists a solution of the transmission problem for arbitrary data. If \(m=2\) and the Brinkman system is given on exterior open set then necessary and sufficient conditions for the existence of a solution of the transmission problem are stated. A solution of the transmission problem is not unique. All solutions of the problem are found.


Transmission problem \(L^q\)-solution Oseen system Brinkman system Layer potential operators Existence and uniqueness results 

Mathematics Subject Classification

35J25 35Q35 42B20 46E35 76D 76M 



The work of Mirela Kohr was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0994. The work of Dagmar Medková was supported by RVO: 67985840 and GAČR Grant No. 16-03230S. The work of Wolfgang L. Wendland was supported by the SimTech Cluster of Excellence at the University Stuttgart, and he also gratefully acknowledges advice by Professor Rainer Helmig. Part of this work was done in 2014, when Mirela Kohr visited the Department of Mathematics of the University of Toronto. She is grateful to the members of this department for their hospitality during that visit.


  1. 1.
    Buchukuri, T., Chkadua, O., Duduchava, R., Natroshvili, D.: Interface crack problmes for metallic-piezoelectric composite structure. Mem. Differ. Equ. Math. Phys. 55, 1–150 (2012)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chkadua, O., Mikhailov, S.E., Natroshvili, D.: Localized boundary-domain singular integral equations based on harmonic parametrix for divergence-form elliptic PDEs with variable matrix coefficients. Integr. Equ. Oper. Theory 76, 509–547 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chkadua, O., Mikhailov, S.E., Natroshvili, D.: Localized direct segregated boundary-domain integral equations for variable coefficient transmission problems with interface crack. Mem. Differ. Equ. Math. Phys. 52, 17–64 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chkadua, O., Mikhailov, S.E., Natroshvili, D.: Analysis of segregated boundary-domain integral equations for variable-coefficient problems with cracks. Numer. Methods PDE 27, 121–140 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Costabel, M., Dauge, M.: Crack singularities for general elliptic systems. Math. Nachr. 235, 29–49 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Sciences and Technology. Physical Origins and Classical Methods, vol. 1. Springer, Berlin (1990)zbMATHGoogle Scholar
  8. 8.
    Dindoš, M., Mitrea, M.: The stationary Navier-Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and \(C^1\) domains. Arch. Ration. Mech. Anal. 174, 1–47 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Escauriaza, L., Mitrea, M.: Transmission problems and spectral theory for singular integral operators on Lipschitz domains. J. Funct. Anal. 216, 141–171 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fabes, E., Kenig, C., Verchota, G.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fenyö, S., Stolle, H.W.: Theorie und Praxis der linearen Integralgleichungen 1–4. VEB Deutscher Verlag der Wissenschaften, Berlin (1982)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fischer, T.M., Hsiao, G.C., Wendland, W.L.: Singular perturbations for the exterior three-dimensional slow viscous flow problem. J. Math. Anal. Appl. 110, 583–603 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations I, Linearised Steady Problems. Springer Tracts in Natural Philosophy, vol. 38. Springer, Berlin (1998)Google Scholar
  14. 14.
    Gutt, R., Kohr, M., Pintea, C., Wendland, W.L.: On the transmission problems for the Oseen and Brinkman systems on Lipschitz domains in compact Riemanian manifolds. Math. Nachr. 1–14. doi: 10.1002/mana.201400365 (2015)
  15. 15.
    Hsiao, G.C., MacCamy, R.C.: Singular perturbations for the two-dimensional viscous flow problem, pp. 229–244. Springer, Berlin (1982)zbMATHGoogle Scholar
  16. 16.
    Hsiao, G.C., Stephan, E.P., Wendland, W.L.: On the Dirichlet problem in elasticity for a domain exterior to an arc. J. Comput. Appl. Math. 34, 1–19 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations: Variational Methods. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kenig, C.E.: Weighted \(H^p\) spaces on Lipschitz domains. Am. J. Math. 102, 129–163 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potential Anal. 38, 1123–1171 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Boundary value problems of Robin type for the Brinkman and Darcy–Forchheimer–Brinkman systems in Lipschitz domains. J. Math. Fluid Mech. 16, 595–630 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Poisson problems for semilinear Brinkman systems on Lipschitz domains in \({\mathbb{R}}^n\). Z. Angew. Math. Phys. 66, 833–864 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: On the Robin-transmission boundary value problems for the nonlinear Darcy–Forchheimer–Brinkman and Navier–Stokes systems. J. Math. Fluid Mech. 18, 293–329 (2016)Google Scholar
  23. 23.
    Kohr, M., Pintea, C., Wendland, W.L.: Layer potential analysis for pseudodifferential matrix operators in Lipschitz domains on compact Riemannian manifolds: Applications to pseudodifferential Brinkman operators. Int. Math. Res. Not. 19, 4499–4588 (2013)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kohr, M., Pop, I.: Viscous Incompressible Flow for Low Reynolds Numbers. WIT Press, Southampton (2004)zbMATHGoogle Scholar
  25. 25.
    Krutitskii, P.A.: The jump problem for the Laplace equation. Appl. Math. Lett. 14, 353–358 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Krutitskii, P.A.: Explicit solution of the jump problem for the Laplace equation and singularities at the edges. Math. Probl. Eng. 7, 1–13 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Krutitskii, P.A.: The modified jump problem for the Laplace equation and singularities at the tips. J. Comput. Appl. Math. 183, 232–240 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Krutitskii, P.A., Medková, D.: The harmonic Dirichlet problem for cracked domain with jump conditions on cracks. Appl. Anal. 83, 661–671 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Krutitskii, P.A., Medková, D.: Neumann and Robin problems in a cracked domain with jump conditions on cracks. J. Math. Anal. Appl. 301, 99–114 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Maz’ya, V., Mitrea, M., Shaposhnikova, T.: The inhomogenous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to \(VMO\). Funct. Anal. Appl. 43, 217–235 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Medková, D.: Convergence of the Neumann series in BEM for the Neumann problem of the Stokes system. Acta Appl. Math. 116, 281–304 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Medková, D.: \(L^q\)-solution of the Robin problem for the Oseen system. Acta Appl. Math. 142, 61–79 (2016). doi: 10.1007/s10440-015-0014-5
  33. 33.
    Medková, D.: Transmission problem for the Brinkman system. Complex Var. Elliptic Equ. 59, 1664–1678 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Medková, D., Varnhorn, W.: Boundary value problems for the Stokes equations with jumps in open sets. Appl. Anal. 87, 829–849 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Mikhailov, S.E.: Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains. J. Math. Anal. Appl. 378, 324–342 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Mitrea, D.: A generalization of Dahlberg’s theorem concerning the regularity of harmonic Green potentials. Trans. Am. Math. Soc. 360, 3771–3793 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Mitrea, D., Mitrea, M., Qiang, S.: Variable coefficient transmission problems and singular integral operators on non-smooth manifolds. J. Integral Equ. Appl. 18, 361–397 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Mitrea, M., Taylor, M.: Navier-Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321, 955–987 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Mitrea, M., Wright, M., Société mathématique de France.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. In: Astérisque, vol. 344. Societé mathématique de France, Paris (2012)Google Scholar
  40. 40.
    Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  41. 41.
    Pouya, A.: Minh-Ngoc Vu: Numerical modelling of steady-state flow in \(2D\)-cracked anisotropic porous media by singular integral equations method. Transp. Porous Med. 93, 475–493 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Russo, R., Simader, ChG: A note on the existence of solutions to the Oseen system in Lipschitz domains. J. Math. Fluid Mech. 8, 64–76 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Schechter, M.: Principles of Functional Analysis. American Mathematical Society, Providence (2002)zbMATHGoogle Scholar
  44. 44.
    Stein, E.M.: Harmonic Analysis. Orthogonality, and Oscilatory Integrals, Real-Variable Methods. Princeton Univ. Press, Princeton (1993)Google Scholar
  45. 45.
    Stephan, E.P.: A boundary integral equation method for three-dimensional crack problems in elasticity. Math. Methods Appl. Sci. 8, 603–623 (1986)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Stephan, E.P.: Boundary integral equations for screen problems in \({\mathbb{R}}^3\). Integr. Equ. Oper. Theory 10, 236–257 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Varnhorn, W.: The Stokes Equations. Akademie Verlag, Berlin (1994)zbMATHGoogle Scholar
  48. 48.
    Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Wendland, W.L., Stephan, E.P.: A hypersingular boundary integral method for two-dimensional screen and crack problems. Arch. Ration. Mech. Anal. 112, 363–390 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Wendland, W.L., Zhu, J.: The boundary element method for three-dimensional Stokes flows exterior to an open surface. Math. Comput. Model. 15, 19–41 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceBabeş-Bolyai UniversityCluj-NapocaRomania
  2. 2.Institute of Mathematics of the Czech Academy of SciencesPrague 1Czech Republic
  3. 3.Institut für Angewandte Analysis und Numerische SimulationUniversität StuttgartStuttgartGermany

Personalised recommendations