Skip to main content
Log in

Asymptotic integration of a certain second-order linear delay differential equation

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We construct the asymptotic formulas for solutions of a certain linear second-order delay differential equation as independent variable tends to infinity. When the delay equals zero this equation turns into the so-called one-dimensional Schrödinger equation at energy zero with Wigner–von Neumann type potential. The question of interest is how the behaviour of solutions changes qualitatively and quantitatively when the delay is introduced in this dynamical model. We apply the method of asymptotic integration that is based on the ideas of the centre manifold theory in its presentation with respect to the systems of functional differential equations with oscillatory decreasing coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., Bohner, M., Li, W.-T.: Nonoscillation and Oscillation: Theory for Functional Differential Equations. Dekker, New York (2004)

    Book  MATH  Google Scholar 

  2. Bellman, R.: Stability Theory of Differential Equations. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  3. Berezansky, L., Braverman, E.: Some oscillation problems for a second order linear delay differential equation. J. Math. Anal. Appl. 220(2), 719–740 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodine, S., Lutz, D.A.: Asymptotic analysis of solutions of a radial Schrödinger equation with oscillating potential. Math. Nachr. 279(15), 1641–1663 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burd, V., Nesterov, P.: Asymptotic behaviour of solutions of the difference Schroödinger equation. J. Differ. Equ. Appl. 17(11), 1555–1579 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cassell, J.S.: The asymptotic behaviour of a class of linear oscillators. Quart. J. Math. 32(3), 287–302 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cassell, J.S.: The asymptotic integration of some oscillatory differential equations. Quart. J. Math. 33(2), 281–296 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  9. Eastham, M.S.P.: The Asymptotic Solution of Linear Differential Systems. Clarendon Press, Oxford (1989)

    MATH  Google Scholar 

  10. Erbe, L.H., Kong, Q., Zhang, B.G.: Oscillation Theory for Functional Differential Equations. Dekker, New York (1995)

    MATH  Google Scholar 

  11. Hale, J., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations, vol. 99. Springer, New York (1993). (Appl. Math. Sci.)

  12. Its, A.R.: The asymptotic behavior of solutions to the radial Schrödinger equation with oscillating potential at energy zero. Selecta Math. Soviet. 3, 291–300 (1984)

    MATH  Google Scholar 

  13. Kondrat’ev, V.A.: Elementary derivation of a necessary and sufficient condition for non-oscillation of the solutions of a linear differential equation of second order [Jelementarnyj vyvod neobhodimogo i dostatochnogo uslovija nekoleblemosti reshenij linejnogo differencial’nogo uravnenija vtorogo porjadka]. Uspekhi Mat. Nauk 12(3), 159–160 (1957). [in Russian]

  14. Ladde, G.S., Lakshmikantham, V., Zhang, B.G.: Oscillation Theory of Differential Equations with Deviating Arguments. Dekker, New York (1987)

    MATH  Google Scholar 

  15. Levin, A.Y.: Integral criteria for the equation \(\ddot{x} + q(t)x = 0\) to be nonoscillatory [Integral’nyj kriterij neoscilljacionnosti dlja uravnenija \(\ddot{x} + q(t)x = 0\)]. Uspekhi Mat. Nauk 20(2), 244–246 (1965) [in Russian]

  16. Levin, A.J.: Behavior of the solutions of the equation \(\ddot{x}+p(t)\dot{x}+q(t)x = 0\) in the nonoscillatory case. Math. USSR Sbornik 4(1), 33–55 (1968)

    Article  MATH  Google Scholar 

  17. Nesterov, P.N.: Construction of the asymptotics of the solutions of the one-dimensional Schrödinger equation with rapidly oscillating potential. Math. Notes. 80(2), 233–243 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nesterov, P.N.: Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing coefficients. Differ. Equ. 43, 745–756 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nesterov, P.: Asymptotic integration of functional differential systems with oscillatory decreasing coefficients: a center manifold approach. Electron. J. Qual. Theory Differ. Equ. 33, 1–43 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Opluštil, Z., Šremr, J.: Some oscillation criteria for the second-order linear delay differential equation. Math. Bohem. 136(2), 195–204 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Opluštil, Z., Šremr, J.: Myshkis type oscillation criteria for second-order linear delay differential equations. Monatsh. Math. 178(1), 143–161 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the Grant of the President of the Russian Federation No. MK-4625.2016.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Nesterov.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterov, P. Asymptotic integration of a certain second-order linear delay differential equation. Monatsh Math 182, 77–98 (2017). https://doi.org/10.1007/s00605-016-0980-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-016-0980-3

Keywords

Mathematics Subject Classification

Navigation