Skip to main content
Log in

A minimization problem with variable growth on Nehari manifold

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, based on the theory of variable exponent space, we study a class of minimizing problem on Nehari manifold via concentration compactness principle. Under suitable assumptions, by showing a relative compactness of minimizing sequences, we prove the existence of minimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamowicz, T., Hästö, P.: Harnack’s inequality and the strong \(p(x)\)-Laplacian. J. Differ. Equ. 250(3), 1631–1649 (2011)

    Article  MATH  Google Scholar 

  2. Alves, C.O., Souto, M.A.S.: Existence of solutions for a class of problems in \(\mathbb{R}^{N}\) involving \(p(x)\)-Laplacian. Prog. Nonlinear Differ. Equ. Appl. 66, 17–32 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Antontsev, S., Chipot, M., Xie, Y.: Uniquenesss results for equation of the \(p(x)\)-Laplacian type. Adv. Math. Sc. Appl. 17(1), 287–304 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Chabrowski, J., Fu, Y.: Existence of solutions for \(p(x)\)-Laplacian problems on a bounded domain. J. Math. Anal. Appl. 306(2005)604–618. Erratum in: J. Math. Anal. Appl. 323(2006)1483

  5. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Legesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, vol. 2017. Springer-Verlag, Heidelberg (2011)

  7. Fan, X.L.: \(p(x)\)-Laplacian equations in \(\mathbb{R}^{N}\) with periodic data and nonperiodic perturbations. J. Math. Anal. Appl. 341, 103–119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan, X.L., Zhao, Y.Z., Zhao, D.: Compact imbedding theorems with symmetry of Strauss-Lions type for the space \(W^{1,\, p(x)}(\Omega )\). J. Math. Anal. Appl. 255, 333–348 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan, X.L., Han, X.: Existence and multiplicity of solutions for \(p(x)\)-Laplacian equations in \(\mathbb{R}^{N}\). Nonlinear Anal. 59, 173–188 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Fu, Y.Q., Zhang, X.: Multiple solutions for a class of \(p(x)\)-Laplacian equations in \(\mathbb{R}^{N}\) involving the critical exponent. Proc. R. Soc. A 466, 1667–1686 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ge, B., Xue, X.P., Zhou, Q.M.: Existence of at least five solutions for a differential inclusion problem involving the \(p(x)\)-Laplacian. Nonlinear Anal. Real World Appl. 12(4), 2304–2318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k,\, p(x)}\). Czechoslovak Math. J. 41, 592–618 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Part 1, Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

    MathSciNet  MATH  Google Scholar 

  14. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

    MathSciNet  MATH  Google Scholar 

  15. Mihbreveailescu, M., Rbreveadulescu, v: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. A A(462), 2625–2641 (2006)

    Article  MathSciNet  Google Scholar 

  16. Mihbreveailescu, M., Rbreveadulescu, V.: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proc. Amer. Math. Soc. 135, 2929–2937 (2007)

    Article  MathSciNet  Google Scholar 

  17. Růz̆ic̆ka, M.: Electro-rheological fluids: modeling and mathematical theory. Springer-Verlag, Berlin (2000)

    Google Scholar 

  18. Zhang, C., Zhou, S.L.: Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and \(L^1\) data. J. Differ. Equ. 248(6), 1376–1400 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Zhang.

Additional information

Communicated by J. Escher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X. A minimization problem with variable growth on Nehari manifold. Monatsh Math 181, 485–500 (2016). https://doi.org/10.1007/s00605-016-0944-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-016-0944-7

Keywords

Mathematics Subject Classification

Navigation