Skip to main content
Log in

The solution gap of the Brezis–Nirenberg problem on the hyperbolic space

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We consider the positive solutions of the nonlinear eigenvalue problem \(-\Delta _{\mathbb {H}^n} u = \lambda u + u^p, \) with \(p=\frac{n+2}{n-2}\) and \(u \in H_0^1(\Omega ),\) where \(\Omega \) is a geodesic ball of radius \(\theta _1\) on \(\mathbb {H}^n.\) For radial solutions, this equation can be written as an ordinary differential equation having n as a parameter. In this setting, the problem can be extended to consider real values of n. We show that if \(2<n<4\) this problem has a unique positive solution if and only if \(\lambda \in \left( n(n-2)/4 +L^*\,,\, \lambda _1\right) .\) Here \(L^*\) is the first positive value of \(L = -\ell (\ell +1)\) for which a suitably defined associated Legendre function \(P_{\ell }^{-\alpha }(\cosh \theta ) >0\) if \(0 < \theta <\theta _1\) and \(P_{\ell }^{-\alpha }(\cosh \theta _1)=0,\) with \(\alpha = (2-n)/2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bandle, C., Benguria, R.: The Brézis–Nirenberg problem on \(\mathbb{S}^3\). J. Differ. Equ. 178(1), 264–279 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandle, C., Kabeya, Y.: On the positive, “radial” solutions of a semilinear elliptic equation in \(\mathbb{H}^{N}\). Adv. Nonlinear Anal. 1(1), 1–25 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benguria, R., Benguria, S.: The Brezis-Nirenberg problem on \(\mathbb{S}^{n}\), in spaces of fractional dimension, vol 7 (2015). arXiv:1503.0634

  4. Bonforte, M., Gazzola, F., Grillo, G., Vázquez, J.L.: Classification of radial solutions to the Emden–Fowler equation on the hyperbolic space. Calc. Var. Partial Differ. Equ. 46(1–2), 375–401 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dwight, H.B.: Tables of integrals and other mathematical data, 4th edn. The Macmillan Company, New York (1961)

    MATH  Google Scholar 

  7. Ganguly, D., Sandeep, K.: Sign changing solutions of the Brezis–Nirenberg problem in the hyperbolic space. Calc. Var. Partial Differ. Equ. 50(1–2), 69–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ganguly, D., Sandeep, K.: Nondegeneracy of positive solutions of semilinear elliptic problems in the hyperbolic space. Commun. Contemp. Math. 17(1), 1450019 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jannelli, E.: The role played by space dimension in elliptic critical problems. J. Differ. Equ. 156(2), 407–426 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kwong, M.K., Li, Y.: Uniqueness of radial solutions of semilinear elliptic equations. Trans. Am. Math. Soc. 333(1), 339–363 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mancini, G., Sandeep, K.: On a semilinear elliptic equation in \(\mathbb{H}^{n}\). Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7(4), 635–671 (2008)

  12. McKean, H.P.: An upper bound to the spectrum of \(\Delta \) on a manifold of negative curvature. J. Differ. Geom. 4, 359–366 (1970)

    MathSciNet  MATH  Google Scholar 

  13. Pucci, P., Serrin, J.: Critical exponents and critical dimensions for polyharmonic operators. J. Math. Pures Appl. (9) 69(1), 55–83 (1990)

  14. Richtmyer, R.D.: Principles of advanced mathematical physics. Vol. II. Springer, New York-Berlin (1981) (Texts and Monographs in Physics)

  15. Stapelkamp, S.: The Brézis-Nirenberg problem on \(\mathbb{H}^{n}\). Existence and uniqueness of solutions. In: Elliptic and parabolic problems (Rolduc/Gaeta, 2001), pp. 283–290. World Sci. Publ., River Edge (2002)

  16. Talenti, G.: Best constant in Sobolev inequality. Ann. Math. Pura Appl. 4(110), 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soledad Benguria.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benguria, S. The solution gap of the Brezis–Nirenberg problem on the hyperbolic space. Monatsh Math 181, 537–559 (2016). https://doi.org/10.1007/s00605-015-0861-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0861-1

Keywords

Mathematics Subject Classification

Navigation