Skip to main content
Log in

The expected number of random elements to generate a finite group

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We will see that the expected number of elements of a finite group G which have to be drawn at random, with replacement, before a set of generators is found, can be determined using the Möbius function defined on the subgroup lattice of G. We will discuss several applications of this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crestani, E., De Franceschi, G., Lucchini, A.: Probability and bias in generating supersoluble groups. Proc. Edinb. Math. Soc. (To appear)

  2. Detomi, E., Lucchini, A.: Crowns and factorization of the probabilistic zeta function of a finite group. J. Algebra 265, 651–668 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Detomi, E., Lucchini, A.: Some generalizations of the probabilistic zeta function. In: Ischia Group Theory 2006, pp. 56–72. World Scientific Publishing, Hackensack (2007)

  4. Dixon, J.D.: The probability of generating the symmetric group. Math. Z. 110, 199–205 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  5. Finch, S.: Mathematical Constants. Encyclopedia of Mathematics and its Applications, vol. 94. Cambridge University Press, Cambridge (2003)

  6. The GAP Group, GAP: Groups, algorithms, and programming, Version 4.7.7 (2015). http://www.gap-system.org

  7. Hall, P.: The Eulerian functions of a group. Q. J. Math. 7, 134–151 (1936)

    Article  MATH  Google Scholar 

  8. Kantor, W.M., Lubotzky, A.: The probability of generating a finite classical group. Geom. Dedic. 36, 67–87 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liebeck, M.W., Shalev, A.: The probability of generating a finite simple group. Geom. Dedic. 56, 103–113 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lubotzky, A., Segal. D.: Subgroup Growth. Progress in Mathematics, vol. 212. Birkhäuser, Basel (2003)

  11. Lubotzky, A.: The expected number of random elements to generate a finite group. J. Algebra 257, 452–459 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lucchini, A.: The \(X\)-Dirichlet polynomial of a finite group. J. Group Theory 8, 171–188 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mann, A.: Positively finitely generated groups. Forum Math. 8, 429–459 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mann, A., Shalev, A.: Simple groups, maximal subgroups, and probabilistic aspects of profinite groups. Isr. J. Math. 96, 449–468 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maróti, A., Tamburini, M.C.: Bounds for the probability of generating the symmetric and alternating groups. Arch. Math. 96, 115–121 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Menezes, N.E., Quick, M., Roney-Dougal, C.M.: The probability of generating a finite simple group. Isr. J. Math. 198(1), 371–392 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Morigi, M.: On the probability of generating free prosoluble groups of small rank. Isr. J. Math. 155, 117–123 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pfeiffer, G.: The subgroups of \(M_{24},\) or how to compute the table of marks of a finite group. Exp. Math. 6, 247–270 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pomerance, C.: The expected number of random elements to generate a finite abelian group. Period. Math. Hung. 43, 191–198 (2001)

  20. Weigel, T.: On the probabilistic \(\zeta \)-function of pro(finite-soluble) groups. Forum Math. 17, 669–698 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lucchini.

Additional information

Communicated by J. S. Wilson.

A. Lucchini was partially supported by Università di Padova (Progetto di Ricerca di Ateneo: “Invariable generation of groups”).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucchini, A. The expected number of random elements to generate a finite group. Monatsh Math 181, 123–142 (2016). https://doi.org/10.1007/s00605-015-0789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0789-5

Keywords

Mathematics Subject Classification

Navigation