Skip to main content
Log in

On the left invariant Randers and Matsumoto metrics of Berwald type on 3-dimensional Lie groups

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper we identify all simply connected 3-dimensional real Lie groups which admit Randers or Matsumoto metrics of Berwald type with a certain underlying left invariant Riemannian metric. Then we give their flag curvatures formulas explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, H., Deng, S.: Invariant \((\alpha,\beta )-\)metrics on homogeneous manifolds. Monatsh. Math. 154, 89–102 (2008)

    Article  MathSciNet  Google Scholar 

  2. Antonelli, P.L., Ingarden, R.S., Matsumoto, M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology. Kluwer Academic Publishers, Dordrecht (1993)

    Book  Google Scholar 

  3. Asanov, G.S.: Finsler Geometry, Relativity and Gauge Theories. D. Reidel Publishing Company, Dordrecht (1985)

    Book  Google Scholar 

  4. Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann–Finsler Geometry. Springer, Berlin (2000)

    Book  Google Scholar 

  5. Chern, S.S., Shen, Z.: Riemann–Finsler Geometry. World Scientific, Singapore (2005)

    Book  Google Scholar 

  6. Deng, S., Hou, Z.: Invariant Randers metrics on homogeneous Riemannian manifolds. J. Phys. A Math. Gen. 37, 4353–4360 (2004)

    Article  MathSciNet  Google Scholar 

  7. Esrafilian, E., Salimi, H.R.: Moghaddam, flag curvature of invariant Randers metrics on homogeneous manifolds. J. Phys. A Math. Gen. 39, 3319–3324 (2006)

    Article  Google Scholar 

  8. Ha, K.Y., Lee, J.B.: Left invariant metrics and curvatures on simply connected threedimensional Lie groups. Math. Nachr. 282(6), 868–898 (2009)

    Article  MathSciNet  Google Scholar 

  9. Matsumoto, M.: A slope of a mountain is a Finsler surface with respect to time measure. J. Math. Kyoto Univ. 29, 17–25 (1989)

    MathSciNet  Google Scholar 

  10. Matsumoto, M.: Theory of Finsler spaces with \((\alpha,\beta )\)-metric. Rep. Math. Phys. 31, 43–83 (1992)

    Article  MathSciNet  Google Scholar 

  11. Randers, G.: On an asymmetrical metric in the four-space of general relativity. Phys. Rev. 59, 195–199 (1941)

    Article  MathSciNet  Google Scholar 

  12. Salimi Moghaddam, H.R.: Flag curvature. J. Geom. Phys. 59, 969–975 (2009)

    Article  MathSciNet  Google Scholar 

  13. Salimi Moghaddam, H.R.: The relation between automorphism group and isometry group of Randers Lie groups. Results Math. 61(1), 137–142 (2012). doi:10.1007/s00025-010-0081-x

    Article  MathSciNet  Google Scholar 

  14. Salimi Moghaddam, H.R.: Invariant Matsumoto metrics on homogeneous spaces, Osaka. J. Math. 51, 39–45 (2014)

    MathSciNet  Google Scholar 

  15. Shen, Z.: Lectures on Finsler Geometry. World Scientific, Singapore (2001)

    Book  Google Scholar 

Download references

Acknowledgments

This research was supported by the Center of Excellence for Mathematics at the University of Isfahan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Salimi Moghaddam.

Additional information

Communicated by D. V. Alekseevsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimi Moghaddam, H.R. On the left invariant Randers and Matsumoto metrics of Berwald type on 3-dimensional Lie groups. Monatsh Math 177, 649–658 (2015). https://doi.org/10.1007/s00605-015-0782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0782-z

Keywords

Mathematics Subject Classification

Navigation