Skip to main content
Log in

The Nagell–Ljunggren equation via Runge’s method

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The Diophantine equation \(\frac{x^n-1}{x-1}=y^q\) has four known solutions in integers \(x, y, q\) and \(n\) with \(|x|, |y|, q > 1\) and \(n > 2\). Whilst we expect that there are, in fact, no more solutions, such a result is well beyond current technology. In this paper, we prove that if \((x,y,n,q)\) is a solution to this equation, then \(n\) has three or fewer prime divisors, counted with multiplicity. This improves a result of Bugeaud and Mihăilescu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, M.A.: Rational approximation to algebraic numbers of small height: the Diophantine equation \(\vert ax^n-by^n\vert =1\). J. Reine Angew. Math. 535, 1–49 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bugeaud, Y., Hanrot, G., Mignotte, M.: Sur l’équation diophantienne \(\frac{x^n-1}{x-1}=y^q\). III. Proc. London Math. Soc. 84, 59–78 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bugeaud, Y., Mignotte, M.: Sur l’équation diophantienne \(\frac{x^n-1}{x-1}=y^q\), II. C. R. Acad. Sci. Paris Sr. I Math. 328, 741–744 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bugeaud, Y., Mignotte, M.: L’équation de Nagell–Ljunggren \(\frac{x^n-1}{x-1} = y^q\). Enseign. Math. 48, 147–168 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Bugeaud, Y., Mignotte, M., On the Diophantine equation \((x^n-1), (x-1) = y^q\) with negative \(x\). Number theory for the millennium, I (Urbana, IL, : 145–151. A K Peters, Natick, MA, 2000) (2002)

  6. Bugeaud, Y., Mignotte, M., Roy, Y.: On the Diophantine equation \((x^n-1)/(x-1)=y^q\). Pac. J. Math. 193, 257–268 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bugeaud, Y., Mihăilescu, P.: On the Nagell–Ljunggren equation \(\frac{x^n-1}{x-1}=y^q\). Math. Scand. 101, 177–183 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Guralnick, R.M.: Subgroups of prime power index in a simple group. J. Algebra 81, 304–311 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ljunggren, W.: Noen Setninger om ubestemte likninger av formen \((x^n-1)/(x-1)=y^q\). Norsk. Mat. Tidsskr. 25, 17–20 (1943)

    MATH  MathSciNet  Google Scholar 

  10. Mihăilescu, P.: New bounds and conditions for the equation of Nagell–Ljunggren. J. Number Theory 124(2), 380–395 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mihăilescu, P.: Primary cyclotomic units and a proof of Catalan’s conjecture. J. Reine Angew. Math. 572, 167–195 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Nagell, T.: Des équations indéterminées \(x^2+x+1=y^n\) et \(x^2+x+1=3y^n\). Nordsk. Mat. Forenings Skr. 2 (1920)

  13. Nagell, T.: Note sur l’équation indéterminée \((x^n-1)/(x-1)=y^q\). Norsk. Mat. Tidsskr. 2, 75–78 (1920)

    MATH  Google Scholar 

  14. Sander, J.W.: Irrationality criteria for Mahler’s numbers. J. Number Theory 52, 145–156 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shorey, T.N.: Perfect powers in values of certain polynomials at integer points. Math. Proc. Camb. Philos. Soc. 99, 195–207 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors were supported by grants from, respectively, the Natural Sciences and Engineering Council of Canada, and the National Science Foundation, Grant DMS-1102563.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Bennett.

Additional information

Communicated by U. Zannier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, M.A., Levin, A. The Nagell–Ljunggren equation via Runge’s method. Monatsh Math 177, 15–31 (2015). https://doi.org/10.1007/s00605-015-0748-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0748-1

Keywords

Mathematics Subject Classification

Navigation