Skip to main content
Log in

Asymptotics of the Weyl function for Schrödinger operators with measure-valued potentials

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We derive an asymptotic expansion for the Weyl function of a one-dimensional Schrödinger operator which generalizes the classical formula by Atkinson. Moreover, we show that the asymptotic formula can also be interpreted in the sense of distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics, 2nd edn. AMS Chelsea Publishing, Providence (2005)

    MATH  Google Scholar 

  2. Atkinson, F.V.: On the location of Weyl circles. Proc. R. Soc. Edinb. 88A, 345–356 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Amor, A., Remling, C.: Direct and inverse spectral theory of one-dimensional Schrödinger operators with measures. Integr. Equ. Oper. Theory 52(3), 395–417 (2005)

  4. Bennewitz, C.: A note on the Titchmarsh–Weyl \(m\)-function, vol. 2, pp. 105–111. Argonne Nat. Lab (preprint, ANL-87-26) (1988)

  5. Bennewitz, C.: Spectral asymptotics for Sturm–Liouville equations. Proc. Lond. Math. Soc. (3) 59(2), 294–338 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boutet de Monvel, A., Marchenko, V.: Asymptotic formulas for spectral and Weyl functions of Sturm–Liouville operators with smooth potentials. In: Gohberg, I., Lubich, Y. (eds.) New Results in Operator Theory and its Applications, Operator Theory, Advances and Applications, vol. 98, pp. 102–117. Birkhäuser, Basel (1997)

  7. Danielyan, A.A., Levitan, B.M.: On the asymptotic behavior of the Weyl–Titchmarsh \(m\)-function. Math. USSR Izv. 36, 487–496 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eckhardt, J., Gesztesy, F., Nichols, R., Teschl, G.: Supersymmetry and Schrödinger-type operators with distributional matrix-valued potentials. J. Spectr. Theory 4, 715–768 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eckhardt, J., Gesztesy, F., Nichols, R., Teschl, G.: Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials. Opusc. Math. 33, 467–563 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eckhardt, J., Gesztesy, F., Nichols, R., Teschl, G.: Inverse spectral theory for Sturm-Liouville operators with distributional potentials. J. Lond. Math. Soc. 88(2), 801–828 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eckhardt, J., Teschl, G.: Sturm–Liouville operators with measure-valued coefficients. J. Anal. Math. 120, 151–224 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Everitt, W.N.: On a property of the \(m\)-coefficient of a second-order linear differential equation. J. Lond. Math. Soc. 2(4), 443–457 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Everitt, W.N., Halvorsen, S.G.: On the asymptotic form of the Titchmarsh–Weyl \(m\)-coefficient. Appl. Anal. 8, 153–169 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Everitt, W.N., Hinton, D.B., Shaw, J.K.: The asymptotic form of the Titchmarsh–Weyl coefficient for Dirac systems. J. Lond. Math. Soc. 2(27), 465–476 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harris, B.J.: On the Titchmarsh–Weyl \(m\)-function. Proc. R. Soc. Edinb. 95A, 223–237 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harris, B.J.: The asymptotic form of the Titchmarsh–Weyl \(m\)-function. J. Lond. Math. Soc. 2(30), 110–118 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harris, B.J.: The asymptotic form of the Titchmarsh–Weyl \(m\)-function associated with a second order differential equation with locally integrable coefficient. Proc. R. Soc. Edinb. 102A, 243–251 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harris, B.J.: An exact method for the calculation of certain Titchmarsh–Weyl \(m\)-functions. Proc. R. Soc. Edinb. 106A, 137–142 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hille, E.: Lectures on Ordinary Differential Equations. Addison-Wesley, Reading (1969)

    MATH  Google Scholar 

  20. Hinton, D.B., Klaus, M., Shaw, J.K.: Series representation and asymptotics for Titchmarsh–Weyl \(m\)-functions. Differ. Integral Equ. 2, 419–429 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Kaper, H.G., Kwong, M.M.: Asymptotics of the Titchmarsh–Weyl \(m\)-coefficient for integrable potentials. Proc. R. Soc. Edinb. 103A, 347–358 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaper, H.G., Kwong, M.M.: Asymptotics of the Titchmarsh–Weyl \(m\)-coefficient for integrable potentials, II. In: Knowles, W., Saito, Y. (eds.) Differential Equations and Mathematical Physics, I. Lecture Notes in Mathematics, vol. 1285, pp. 222–229. Springer, Berlin (1987)

  23. Levitan, B.M.: A remark on one theorem of V. A. Marchenko. Trudy Moskov. Mat. Obsch. 1, 421–422 (1952). (In Russian)

    MathSciNet  MATH  Google Scholar 

  24. Levitan, B.M., Sargsjan, I.S.: Sturm–Liouville and Dirac Operators (Russian). Nauka, Moscow (1988)

    Google Scholar 

  25. Marchenko, V.A.: Some questions in the theory of one-dimensional second-order linear differential operators. I. Trudy Moskov. Mat. Obsch. 1, 327–420 (1952) (In Russian). Am. Math. Soc. Transl. (2) 101, 1–104 (1973)

  26. Pechentsov, A.S.: Trace of a difference of singular Sturm–Liouville operators with a potential containing Dirac \(\delta \)-functions. Russ. J. Math. Phys. 20, 230–238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rybkin, A.: On the trace approach to the inverse scattering problem in dimension one. SIAM J. Math. Anal. 32, 1248–1264 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Savchuk, A.M., Shkalikov, A.A.: Trace formula for Sturm–Liouville operators with singular potentials. Math. Notes 69, 387–400 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Simon, B.: A new approach to inverse spectral theory, I. Fundamental formalism. Ann. Math. 150, 1029–1057 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Teschl, G.: Mathematical methods in quantum mechanics; with applications to Schrödinger operators, 2nd edn, vol. 157. Graduate Studies in Mathematics, American Mathematical Society, RI (2014)

  31. Weyl, H.: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann. 68, 220–269 (1910)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are indebted to Jonathan Eckhardt, Fritz Gesztesy and Helge Holden for discussions on this subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Teschl.

Additional information

Communicated by A. Constantin.

Research supported by the Austrian Science Fund (FWF) under Grant No. Y330.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luger, A., Teschl, G. & Wöhrer, T. Asymptotics of the Weyl function for Schrödinger operators with measure-valued potentials. Monatsh Math 179, 603–613 (2016). https://doi.org/10.1007/s00605-015-0740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0740-9

Keywords

Mathematics Subject Classification

Navigation