Monatshefte für Mathematik

, Volume 178, Issue 3, pp 345–359 | Cite as

A von Staudt-type result for \({\sum _{z\in \mathbb {Z}_n[i]} z^k }\)

  • Pedro Fortuny Ayuso
  • José María Grau
  • Antonio M. Oller-Marcén
Article

Abstract

In this paper we study the sum of powers of the Gaussian integers \(\mathbf {G}_k(n):=\sum _{a,b \in [1,n]} (a+b i)^k\). We give an explicit formula for \(\mathbf {G}_k(n) \pmod n\) in terms of the prime numbers \(p \equiv 3 \pmod 4\) with \(p \mid \mid n\) and \(p-1 \mid k\), similar to the well known one due to von Staudt for \(\sum _{i=1}^n i^k \pmod n\). We apply this result to study the set of integers \(n\) which divide \(\mathbf {G}_n(n)\) and compute its asymptotic density with six exact digits: \(0.971000\ldots \).

Keywords

Power sum Erdös–Moser equation Asymptotic density 

Mathematics Subject Classification

11B99 11A99 11A07 

References

  1. 1.
    Beardon, A.F.: Sums of powers of integers. Am. Math. Month. 103(3), 201–213 (1996)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Carlitz, L.: The Staudt–Clausen theorem. Math. Mag. 34, 131–146 (1960–1961)Google Scholar
  3. 3.
    Grau, J.M., Oller-Marcén, A.M.: About the congruence \(\sum _{k=1}^n k^{f(n)} \equiv 0 (mod n)\). Preprint (2013). arXiv:1304.2678
  4. 4.
    Kellner, B.C.: On the theorems of Von Staudt and Clausen. (In preparation)Google Scholar
  5. 5.
    Lengyel, T.: On divisibility of some power sums. Integers 7:A41, 6 (2007)Google Scholar
  6. 6.
    MacMillan, K., Sondow, J.: Divisibility of power sums and the generalized Erdős–Moser equation. Elem. Math. 67(4), 182–186 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Moree, P.: On a theorem of Carlitz-von Staudt. C. R. Math. Rep. Acad. Sci. Can. 16(4), 166–170 (1994)MathSciNetMATHGoogle Scholar
  8. 8.
    Sloane, N.J.A.: The on-line encyclopedia of integer sequences. https://oeis.org
  9. 9.
    Sondow, J., MacMillan, K.: Reducing the Erdős–Moser equation \(1^n+2^n+\cdots +k^n=(k+1)^n\) modulo \(k\) and \(k^2\). Preprint (2010). arXiv:1011.2154
  10. 10.
    Sondow, J., MacMillan, K.: Reducing the Erdős–Moser equation \(1^n+2^n+\cdots +k^n=(k+1)^n\) modulo \(k\) and \(k^2\). Integers 11, A34, 8, (2011)Google Scholar
  11. 11.
    von Staudt, K.G.C.: Beweis eines Lehrsatzes die Bernoullischen Zahlen betreffend. J. Reine Angew. Math 21, 372–374 (1840)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dilcher, K.: Congruences for a class of alternating lacunary sums of binomial coeficients. J. Integer Seq. 10 Article (2007)Google Scholar
  13. 13.
    Hermite, Ch.: Extrait d’une lettre a M. Borchardt. J. Reine Angew. Math. 81, 93–95 (1876)MathSciNetGoogle Scholar
  14. 14.
    Bachmann, P.: Niedere Zahlentheorie, Part 2, Teubner, Leipzig: parts 1 and 2 reprinted in one volume. Chelsea, New York, (1910) (1968)Google Scholar
  15. 15.
    Mathar, R.J.: Table of Dirichlet L-series and prime zeta modulo functions for small moduli (2010). arXiv:1008.2547
  16. 16.
    Moser, L.: On the Diophantine equation \(1^n+2^n+3^n+\cdots +(m-1)^n =m^n\). Scr. Math. 19, 84–88 (1953)MATHGoogle Scholar
  17. 17.
    Butske, W., Jaje, L.M., Mayernik, D.R.: On the equation \(\sum _{P \mid N} \frac{1}{P}+\frac{1}{N}=1\), pseudoperfect numbers, and perfectly weighted graphs. Math. Comp 69, 407–420 (2000)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Moree, P.: Moser’s mathemagical work on the equation \(1^k+2^k+\cdots +(m-1)^k=m^k\). Rocky Mt. J. Math. 5, 1707–1737 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Guy, R.: Unsolved problems in number theory, 2nd edn. Springer, New York (2004)CrossRefMATHGoogle Scholar
  20. 20.
    Schultz, H.J.: The sums of the kth powers of the first n integers Amer. Math. Mon. 87, 478–481 (1980)CrossRefMATHGoogle Scholar
  21. 21.
    Boyer, C.B.: Pascal’s formula for the sums of powers of the integers. Scr. Math. 9, 237–244 (1943)MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Pedro Fortuny Ayuso
    • 1
  • José María Grau
    • 1
  • Antonio M. Oller-Marcén
    • 2
  1. 1.Departamento de MatemáticasUniversidad de OviedoOviedoSpain
  2. 2.Centro Universitario de la Defensa de ZaragozaZaragozaSpain

Personalised recommendations