Skip to main content
Log in

A chromatic version of Lagrange’s four squares theorem

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

When the sequence of squares of the natural numbers is coloured with \(K\) colours, \(K\ge 1\) an integer, let \(s(K)\) be the smallest integer such that each sufficiently large integer can be written as the sum of no more than \(s(K)\) squares, all of the same colour. We show that \(s(K) \ll _{\epsilon } K^{2 + \epsilon }\), for any \(\epsilon > 0\) and all \(K \ge 1\), improving on a result of Hegyvári and Hennecart, who obtained \(s(K) \ll (K\log K)^5\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sárközy, A.: Unsolved problems in number theory. Period. Math. Hungar. 42, 17–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hegyvári, N., Hennecart, F.: On monochromatic sums of squares and primes. J. Number Theory 124, 314–324 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Prakash, G., Ramana, D.S.: The large sieve inequality for integer polynomial amplitudes. J. Number Theory 129, 428–433 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J.: On \(\Lambda (p)\)-subsets of squares. Israel J. Math. 67(3), 291–311 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ramana, D.S., Ramaré, O.: Additive energy of dense sets of primes and monochromatic sums. Israel J. Math. (2014). doi:10.1007/s11856-013-0075-y

  6. Montgomery, H.L.: Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis. In: Regional Conference Series in Mathematics, vol 84. CBMS (1994)

  7. Davenport, H., Browning, T.D. (eds.): Analytic Methods for Diophantine Equations and Diophantine Inequalities. Cambridge Mathematics Library, CUP, Cambridge (2005)

    MATH  Google Scholar 

  8. Ramaré, O.: Arithmetical Aspects of the Large Sieve Inequality. With the collaboration of D. S. Ramana. Harish-Chandra Research Institute Lecture Notes, vol 1. Hindustan Book Agency, New Delhi (2009)

  9. Zhao, L.: Large sieve inequality with quadratic amplitudes. Montash. Math. 151, 165–173 (2007)

    Article  MATH  Google Scholar 

  10. Ramaré, O., Ruzsa, I.Z.: Additive properties of dense subsets of sifted sequences. J. de théorie des nombres de Bordeaux 2001(13), 559–581 (2001)

    Article  Google Scholar 

  11. Sárközy, A.: Finite addition Theorem I. J. Number Theory 48, 197–218 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lev, V.: Optimal representation by sumsets and subsets sums. J. Number Theory 62, 127–143 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rosser, B., Schoenfeld, I.: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6(1), 64–94 (1962)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Ramana.

Additional information

Communicated by J. Schoißengeier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhilesh, P., Ramana, D.S. A chromatic version of Lagrange’s four squares theorem. Monatsh Math 176, 17–29 (2015). https://doi.org/10.1007/s00605-014-0634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0634-2

Keywords

Mathematics Subject Classification (2010)

Navigation