Skip to main content
Log in

New star discrepancy bounds for \((t,m,s)\)-nets and \((t,s)\)-sequences

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we derive new general upper bounds on the star discrepancy of \((t,m,s)\)-nets and \((t,s)\)-sequences. These kinds of point sets are among the most widely used in quasi-Monte Carlo methods for numerical integration. By our new results, we improve on previous discrepancy bounds and prove a conjecture stated by the second author in an earlier paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atanassov, E.I.: On the discrepancy of the Halton sequences. Math. Balkanica (N.S.) 18.1–2, 15–32 (2004)

    MathSciNet  Google Scholar 

  2. Béjian, R.: Minoration de la discrépance d’une suite quelconque sur \(T\). Acta Arith. 41(2), 185–202 (1982)

    MathSciNet  MATH  Google Scholar 

  3. Bilyk, D., Lacey, M.T., Vagharshakyan, A.: On the small ball inequality in all dimensions. J. Funct. Anal. 254, 2470–2502 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Clerck, L.: A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley. Monatsh. Math. 101, 261–278 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dick, J., Kritzer, P.: Star discrepancy estimates for digital \((t, m,2)\)-nets and digital \((t,2)\)-sequences over \({\mathbb{Z}}_2\). Acta Math. Hung. 109(3), 239–254 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dick, J., Kritzer, P.: A best possible upper bound on the star discrepancy of \((t, m,2)\)-nets. Monte Carlo Methods Appl. 12(1), 1–17 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  8. Faure, H.: Discrépance de suites associées à un système de numération (en dimension \(s\)). Acta Arith. 41, 337–351 (1982)

    MathSciNet  MATH  Google Scholar 

  9. Faure, H.: On the star-discrepancy of generalized Hammersley sequences in two dimensions. Monatsh. Math. 101, 291–300 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Faure, H., Chaix, H.: Minoration de discrépance en dimension deux. Acta Arith. 76(2), 149–164 (1996)

    MathSciNet  Google Scholar 

  11. Faure, H., Lemieux, C., Wang, X.: Extensions of Atanassov’s methods for Halton sequences. In: Wozniakowski, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 345–362. Springer, Berlin (2012)

    Chapter  Google Scholar 

  12. Faure, H., Lemieux, C.: Improvements on the star discrepancy of \((t, s)\)-sequences. Acta Arith 154.1, 61–78 (2012)

    Article  MathSciNet  Google Scholar 

  13. Halton, J.H.: On the efficiency of certain Quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 184–190 (1960)

    Google Scholar 

  14. Kritzer, P.: On the star discrepancy of digital nets and sequences in three dimensions. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 273–287. Springer, Berlin (2006)

    Chapter  Google Scholar 

  15. Kritzer, P.: Improved upper bounds on the star discrepancy of \((t, m, s)\)-nets and \((t, s)\)-sequences. J. Complex. 22, 336–347 (2006)

    Google Scholar 

  16. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)

    MATH  Google Scholar 

  17. Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling, Springer Series in Statistics. Springer, New York (2009)

    Google Scholar 

  18. Niederreiter, H.: Point sets and sequences with small discrepancy. Monatsh. Math. 104, 273–337 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  20. Niederreiter, H., Özbudak, F.: Low-discrepancy sequences using duality and global function fields. Acta Arith. 130, 79–97 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Niederreiter, H., Xing, C.P.: Low-discrepancy sequences and global function fields with many rational places. Finite Fields Appl. 2, 241–273 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Niederreiter H., Xing C.P.: Quasirandom points and global function fields. In: Cohen S., Niederreiter H. (eds.) Finite Fields and Applications, London Math. Soc. Lecture Note Series 233, 269–296 (1996)

  23. Niederreiter, H., Xing, C.P.: Rational Points on Curves over Finite Fields: Theory and Applications, London Math. Soc. Lecture Note Series, vol. 285. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  24. Ostromoukhov, V.: Recent progress in improvement of extreme discrepancy and star discrepancy of one-dimensional sequences. In: L’Ecuyer, P., Owen, A.B. (eds.) Monte-Carlo and Quasi-Monte Carlo Methods 2008, pp. 561–572. Springer, New York (2009)

    Chapter  Google Scholar 

  25. Pillichshammer, F.: Improved upper bounds for the star discrepancy of digital nets in dimension 3. Acta Arith. 108, 167–189 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Roth, K.F.: On irregularities of distribution. Mathematika 1, 73–79 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schürer, R., Schmid, W.Ch.: Monte Carlo and Quasi-Monte Carlo Methods 2004. In: Niederreiter, H., Talay, D. (eds.) Min T: A database for optimal net parameters, pp. 457–469. Springer, Berlin (2006)

  28. Schmidt, W.M.: Irregularities of distribution VII. Acta Arith. 21, 45–50 (1972)

    MathSciNet  MATH  Google Scholar 

  29. Sobol, I.M.: The distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Math. Math. Phys. 7, 86–112 (1967)

    Article  MathSciNet  Google Scholar 

  30. Tezuka, S.: Polynomial arithmetic analogue of Halton sequences. ACM Trans. Model. Comp. Sim. 3, 99–107 (1993)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank C. Lemieux, F. Pillichshammer and an anonymous referee for comments and suggestions on how to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kritzer.

Additional information

Communicated by A. Constantin.

P. Kritzer gratefully acknowledges the support of the Austrian Science Fund (FWF), Project P23389-N18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faure, H., Kritzer, P. New star discrepancy bounds for \((t,m,s)\)-nets and \((t,s)\)-sequences. Monatsh Math 172, 55–75 (2013). https://doi.org/10.1007/s00605-012-0470-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-012-0470-1

Keywords

Mathematics Subject Classification (2010)

Navigation