Abstract
Let \({\phi}\) be a rational function of degree at least two defined over a number field k. Let \({a \in \mathbb{P}^1(k)}\) and let K be a number field containing k. We study the cardinality of the set of rational iterated preimages Preim\({(\phi, a, K) = \{x_{0} \in \mathbb{P}^1(K) | \phi^{N} (x_0) = a {\rm for some} N \geq 1\}}\). We prove two new results (Theorems 2 and 4) bounding \({|{\rm Preim}(\phi, a, K)|}\) as \({\phi}\) varies in certain families of rational functions. Our proofs are based on unit equations and a method of Runge for effectively determining integral points on certain affine curves. We also formulate and state a uniform boundedness conjecture for Preim\({(\phi, a, K)}\) and prove that a version of this conjecture is implied by other well-known conjectures in arithmetic dynamics.
Similar content being viewed by others
References
Baker M.: A finiteness theorem for canonical heights attached to rational maps over function fields. J. Reine Angew. Math. 626, 205–233 (2009)
Bilu Y., Parent P.: Runge’s method and modular curves. Int. Math. Res. Notices IMRN 2011(9), 1997–2027 (2011)
Bilu Y., Parent P.: Serre’s uniformity problem in the split Cartan case. Ann. Math. (2) 173(1), 569–584 (2011)
Bombieri E.: On Weil’s “théorème de décomposition”. Am. J. Math. 105(2), 295–308 (1983)
Call G.S., Silverman J.H.: Canonical heights on varieties with morphisms. Composit. Math. 89(2), 163–205 (1993)
Evertse J.H.: The number of solutions of decomposable form equations. Invent. Math. 122(3), 559–601 (1995)
Faber X.: A remark on the effective Mordell conjecture and rational pre-images under quadratic dynamical systems. C. R. Math. Acad. Sci. Paris 348(7–8), 355–358 (2010)
Faber X., Hutz B., Ingram P., Jones R., Manes M., Tucker T.J., Zieve M.E.: Uniform bounds on pre-images under quadratic dynamical systems. Math. Res. Lett. 16(1), 87–101 (2009)
Faber, X., Hutz, B., Stoll, M.: On the number of rational iterated pre-images of the origin under quadratic dynamical systems. Int. J. Number Theory (2012, to appear)
Fakhruddin N.: Questions on self maps of algebraic varieties. J. Ramanujan Math. Soc. 18(2), 109–122 (2003)
Hutz, B., Hyde, T., Krause, B.: Pre-images of quadratic dynamical systems. Involve (2012, to appear)
Ingram P.: Lower bounds on the canonical height associated to the morphism \({\phi(z) = z^d +c}\). Monatsh. Math. 157(1), 69–89 (2009)
Levin A.: Variations on a theme of Runge: effective determination of integral points on certain varieties. J. Théor. Nombres Bordeaux 20(2), 385–417 (2008)
Manin J.I.: The p-torsion of elliptic curves is uniformly bounded. Izv. Akad. Nauk SSSR Ser. Mat. 33, 459–465 (1969)
Merel L.: Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124(1–3), 437–449 (1996)
Morton P., Silverman J.H.: Periodic points, multiplicities, and dynamical units. J. Reine Angew. Math. 461, 81–122 (1995)
Runge C.: Über ganzzahlige Lösungen von Gleichungen zwischen zwei Veränderlichen. J. Reine Angew. Math. 100, 425–435 (1887)
Silverman J.H.: The space of rational maps on \({\mathbb{P}^1}\). Duke Math. J. 94(1), 41–77 (1998)
Silverman J.H.: The arithmetic of dynamical systems. Graduate Texts in Mathematics, vol. 241. Springer, New York (2007)
Vojta P.: Diophantine approximations and value distribution theory. Lecture Notes in Mathematics, vol. 1239. Springer, Berlin (1987)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by U. Zannier.
Rights and permissions
About this article
Cite this article
Levin, A. Rational preimages in families of dynamical systems. Monatsh Math 168, 473–501 (2012). https://doi.org/10.1007/s00605-012-0426-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00605-012-0426-5