Skip to main content
Log in

Rational preimages in families of dynamical systems

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Let \({\phi}\) be a rational function of degree at least two defined over a number field k. Let \({a \in \mathbb{P}^1(k)}\) and let K be a number field containing k. We study the cardinality of the set of rational iterated preimages Preim\({(\phi, a, K) = \{x_{0} \in \mathbb{P}^1(K) | \phi^{N} (x_0) = a {\rm for some} N \geq 1\}}\). We prove two new results (Theorems 2 and 4) bounding \({|{\rm Preim}(\phi, a, K)|}\) as \({\phi}\) varies in certain families of rational functions. Our proofs are based on unit equations and a method of Runge for effectively determining integral points on certain affine curves. We also formulate and state a uniform boundedness conjecture for Preim\({(\phi, a, K)}\) and prove that a version of this conjecture is implied by other well-known conjectures in arithmetic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker M.: A finiteness theorem for canonical heights attached to rational maps over function fields. J. Reine Angew. Math. 626, 205–233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bilu Y., Parent P.: Runge’s method and modular curves. Int. Math. Res. Notices IMRN 2011(9), 1997–2027 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Bilu Y., Parent P.: Serre’s uniformity problem in the split Cartan case. Ann. Math. (2) 173(1), 569–584 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bombieri E.: On Weil’s “théorème de décomposition”. Am. J. Math. 105(2), 295–308 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Call G.S., Silverman J.H.: Canonical heights on varieties with morphisms. Composit. Math. 89(2), 163–205 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Evertse J.H.: The number of solutions of decomposable form equations. Invent. Math. 122(3), 559–601 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faber X.: A remark on the effective Mordell conjecture and rational pre-images under quadratic dynamical systems. C. R. Math. Acad. Sci. Paris 348(7–8), 355–358 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Faber X., Hutz B., Ingram P., Jones R., Manes M., Tucker T.J., Zieve M.E.: Uniform bounds on pre-images under quadratic dynamical systems. Math. Res. Lett. 16(1), 87–101 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Faber, X., Hutz, B., Stoll, M.: On the number of rational iterated pre-images of the origin under quadratic dynamical systems. Int. J. Number Theory (2012, to appear)

  10. Fakhruddin N.: Questions on self maps of algebraic varieties. J. Ramanujan Math. Soc. 18(2), 109–122 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Hutz, B., Hyde, T., Krause, B.: Pre-images of quadratic dynamical systems. Involve (2012, to appear)

  12. Ingram P.: Lower bounds on the canonical height associated to the morphism \({\phi(z) = z^d +c}\). Monatsh. Math. 157(1), 69–89 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Levin A.: Variations on a theme of Runge: effective determination of integral points on certain varieties. J. Théor. Nombres Bordeaux 20(2), 385–417 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Manin J.I.: The p-torsion of elliptic curves is uniformly bounded. Izv. Akad. Nauk SSSR Ser. Mat. 33, 459–465 (1969)

    MathSciNet  Google Scholar 

  15. Merel L.: Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124(1–3), 437–449 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Morton P., Silverman J.H.: Periodic points, multiplicities, and dynamical units. J. Reine Angew. Math. 461, 81–122 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Runge C.: Über ganzzahlige Lösungen von Gleichungen zwischen zwei Veränderlichen. J. Reine Angew. Math. 100, 425–435 (1887)

    MATH  Google Scholar 

  18. Silverman J.H.: The space of rational maps on \({\mathbb{P}^1}\). Duke Math. J. 94(1), 41–77 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Silverman J.H.: The arithmetic of dynamical systems. Graduate Texts in Mathematics, vol. 241. Springer, New York (2007)

    Google Scholar 

  20. Vojta P.: Diophantine approximations and value distribution theory. Lecture Notes in Mathematics, vol. 1239. Springer, Berlin (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Levin.

Additional information

Communicated by U. Zannier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, A. Rational preimages in families of dynamical systems. Monatsh Math 168, 473–501 (2012). https://doi.org/10.1007/s00605-012-0426-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-012-0426-5

Keywords

Mathematics Subject Classification (2000)

Navigation