Bargmann V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187–214 (1961)
MathSciNet
MATH
Article
Google Scholar
Cholewinski F.M.: Generalised Fock spaces and associated operators. SIAM J. Math. 15, 177–202 (1984)
MathSciNet
MATH
Article
Google Scholar
Erdelyi A. et al.: Higher Transcendental Functions, vol. 2. McGraw-Hill, New York (1953)
Google Scholar
Folland G.B.: Harmonic Analysis in Phase Space. Annals of Math Studies, vol. 122. Princeton University Press, Princeton (1989)
Google Scholar
Folland G.B.: Real Analysis, Modern Techniques and Their Applications. Wiley-Interscience, New York (1984)
MATH
Google Scholar
Furioli G., Veneruso A.: Strichartz inequalities for the Schrödinger equation with the full Laplacian on the Heisenberg group. Studia Math. 160(2), 157–178 (2004)
MathSciNet
MATH
Article
Google Scholar
Garg R., Thangavelu S.: On the Hermite expansions of functions from the Hardy class. Studia Math. 198(2), 177195 (2010)
MathSciNet
Article
Google Scholar
Goldberg M., Schlag W.: Dispersive estimates for Schrödinger operator in dimension one and three. Commun. Math. Phys. 251(1), 157–178 (2004)
MathSciNet
MATH
Article
Google Scholar
Hayashi N., Saitoh S.: Analyticity and smoothing effect of Schrödinger equation. Ann. Inst. Henri Poincare 52(2), 163–173 (1990)
MathSciNet
MATH
Google Scholar
Jenson A.: Commutator methods and a smoothing property of the Schrödinger evolution group. Mathe. Z. 191, 53–59 (1986)
Article
Google Scholar
Journé J.L., Soffer A., Sogge C.D.: Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. XLIV, 573–604 (1991)
Article
Google Scholar
Karp, D.: Square summability with geometric weights for classical orthogonal expansions. In: Begehr, H.G.W., et al. (eds.) Advances in Analysis, pp. 407–422. World Scientific, Singapore (2005)
Keel M., Tao T.: End point Strichartz estimates. Am. J. Math. 120, 955–980 (1998)
MathSciNet
MATH
Article
Google Scholar
Krötz B., Thangavelu S., Xu Y.: The heat kernel transform for the Heisenberg group. J. Funct. Anal. 225, 301–336 (2005)
MathSciNet
MATH
Article
Google Scholar
Lebedev N.N.: Special Functions and Their Applications. Dover, New York (1992)
Google Scholar
Nandakumaran A.K., Ratnakumar P.K.: Schrödinger equation and the regularity of the oscillatory semigroup for the Hermite operator. J. Funct. Anal 224, 371–385 (2005)
MathSciNet
MATH
Article
Google Scholar
Nandakumaran A.K., Ratnakumar P.K.: Corrigendum Schrödinger equation and the regularity of the oscillatory semigroup for the Hermite operator. J. Funct. Anal. 224, 719–720 (2006)
MathSciNet
Article
Google Scholar
Ratnakumar P.K.: On Schrödinger propogator for the special Hermite operator. J. Fourier Anal. Appl. 14(2), 286–300 (2008)
MathSciNet
MATH
Article
Google Scholar
Rudin W.: Principle of Mathematical Analysis. McGraw-Hill International Editions, New York (1976)
Google Scholar
Shohat J., Tamarkin J.: The Problem of Moments. American Math. Soc., Mathematical Surveys, vol. II. AMS, New York (1943)
Google Scholar
Strichartz R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44(3), 705–714 (1977)
MathSciNet
MATH
Article
Google Scholar
Strichartz R.S.: Harmonic analysis as spectral theory of Laplacians. J. Funct. Anal. 87, 51–148 (1989)
MathSciNet
MATH
Article
Google Scholar
Stempak K.: On connections between Hankel, Laguerre and Jacobi transplantations. Tohoku Math. J. (2) 54(4), 471–493 (2002)
MathSciNet
MATH
Article
Google Scholar
Stempak K., Trebels W.: On weighted transplantation and multipliers for Laguerre expansions. Math. Ann. 300, 203–219 (1994)
MathSciNet
MATH
Article
Google Scholar
Thangavelu S.: Lectures on Hermite and Laguerre Expansions, Mathematical Notes, vol. 42. Princeton University Press, Princeton (1993)
Google Scholar
Thangavelu S.: Harmonic Analysis on the Heisenberg Group. Progress in Math., vol. 154. Birkhäuser, Boston (1998)
Book
Google Scholar
Thangavelu S.: Hermite and Laguerre semigroups: some recent developments. Séminaires et Congrès 25, 251–284 (2012)
Google Scholar