Skip to main content

Analyticity of the Schrödinger propagator on the Heisenberg group

Abstract

We discuss the analytic extension property of the Schrödinger propagator for the Heisenberg sublaplacian and some related operators. The result for the sublaplacian is proved by interpreting the sublaplacian as a direct integral of an one parameter family of dilated special Hermite operators.

This is a preview of subscription content, access via your institution.

References

  1. Bargmann V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187–214 (1961)

    MathSciNet  MATH  Article  Google Scholar 

  2. Cholewinski F.M.: Generalised Fock spaces and associated operators. SIAM J. Math. 15, 177–202 (1984)

    MathSciNet  MATH  Article  Google Scholar 

  3. Erdelyi A. et al.: Higher Transcendental Functions, vol. 2. McGraw-Hill, New York (1953)

    Google Scholar 

  4. Folland G.B.: Harmonic Analysis in Phase Space. Annals of Math Studies, vol. 122. Princeton University Press, Princeton (1989)

    Google Scholar 

  5. Folland G.B.: Real Analysis, Modern Techniques and Their Applications. Wiley-Interscience, New York (1984)

    MATH  Google Scholar 

  6. Furioli G., Veneruso A.: Strichartz inequalities for the Schrödinger equation with the full Laplacian on the Heisenberg group. Studia Math. 160(2), 157–178 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  7. Garg R., Thangavelu S.: On the Hermite expansions of functions from the Hardy class. Studia Math. 198(2), 177195 (2010)

    MathSciNet  Article  Google Scholar 

  8. Goldberg M., Schlag W.: Dispersive estimates for Schrödinger operator in dimension one and three. Commun. Math. Phys. 251(1), 157–178 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  9. Hayashi N., Saitoh S.: Analyticity and smoothing effect of Schrödinger equation. Ann. Inst. Henri Poincare 52(2), 163–173 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Jenson A.: Commutator methods and a smoothing property of the Schrödinger evolution group. Mathe. Z. 191, 53–59 (1986)

    Article  Google Scholar 

  11. Journé J.L., Soffer A., Sogge C.D.: Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. XLIV, 573–604 (1991)

    Article  Google Scholar 

  12. Karp, D.: Square summability with geometric weights for classical orthogonal expansions. In: Begehr, H.G.W., et al. (eds.) Advances in Analysis, pp. 407–422. World Scientific, Singapore (2005)

  13. Keel M., Tao T.: End point Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  14. Krötz B., Thangavelu S., Xu Y.: The heat kernel transform for the Heisenberg group. J. Funct. Anal. 225, 301–336 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  15. Lebedev N.N.: Special Functions and Their Applications. Dover, New York (1992)

    Google Scholar 

  16. Nandakumaran A.K., Ratnakumar P.K.: Schrödinger equation and the regularity of the oscillatory semigroup for the Hermite operator. J. Funct. Anal 224, 371–385 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  17. Nandakumaran A.K., Ratnakumar P.K.: Corrigendum Schrödinger equation and the regularity of the oscillatory semigroup for the Hermite operator. J. Funct. Anal. 224, 719–720 (2006)

    MathSciNet  Article  Google Scholar 

  18. Ratnakumar P.K.: On Schrödinger propogator for the special Hermite operator. J. Fourier Anal. Appl. 14(2), 286–300 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  19. Rudin W.: Principle of Mathematical Analysis. McGraw-Hill International Editions, New York (1976)

    Google Scholar 

  20. Shohat J., Tamarkin J.: The Problem of Moments. American Math. Soc., Mathematical Surveys, vol. II. AMS, New York (1943)

    Google Scholar 

  21. Strichartz R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44(3), 705–714 (1977)

    MathSciNet  MATH  Article  Google Scholar 

  22. Strichartz R.S.: Harmonic analysis as spectral theory of Laplacians. J. Funct. Anal. 87, 51–148 (1989)

    MathSciNet  MATH  Article  Google Scholar 

  23. Stempak K.: On connections between Hankel, Laguerre and Jacobi transplantations. Tohoku Math. J. (2) 54(4), 471–493 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  24. Stempak K., Trebels W.: On weighted transplantation and multipliers for Laguerre expansions. Math. Ann. 300, 203–219 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  25. Thangavelu S.: Lectures on Hermite and Laguerre Expansions, Mathematical Notes, vol. 42. Princeton University Press, Princeton (1993)

    Google Scholar 

  26. Thangavelu S.: Harmonic Analysis on the Heisenberg Group. Progress in Math., vol. 154. Birkhäuser, Boston (1998)

    Book  Google Scholar 

  27. Thangavelu S.: Hermite and Laguerre semigroups: some recent developments. Séminaires et Congrès 25, 251–284 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Parui.

Additional information

Communicated by K. Gröchenig.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parui, S., Ratnakumar, P.K. & Thangavelu, S. Analyticity of the Schrödinger propagator on the Heisenberg group. Monatsh Math 168, 279–303 (2012). https://doi.org/10.1007/s00605-012-0424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-012-0424-7

Keywords

  • Schrödinger equation
  • Oscillatory group
  • Special Hermite expansion
  • Heisenberg group
  • Sublaplacian

Mathematics Subject Classification (1991)

  • Primary 22E30
  • Secondary 35G10
  • 47A63