Skip to main content
Log in

Diophantine approximation and parametric geometry of numbers

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Dirichlet’s Theorem on simultaneous approximation involves a parameter Q. It can be derived from Minkowski’s geometry of numbers involving a symmetric convex body depending on Q. Therefore it is natural to study parametric Geometry of Numbers. In turn, this will shed new light on diophantine approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bugeaud Y., Laurent M.: On exponents of homogeneous and inhomogeneous Diophantine approximation. Mosc. Math. J. 5(4), 747–766 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Bugeaud, Y., Laurent, M.: Exponents of Diophantine Approximation. Diophantine Geometry. CRM Series 4, pp. 101–121. Ed. Normale, Pisa (2007)

  3. Bugeaud Y., Laurent M.: On transfer inequalities in diophantine approximation II. Math. Z. 265(2), 249–262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jarník V.: Zum Khintchineschen Übertragungssatz. Trav. Inst. Math. Tbilissi 3, 193–212 (1938)

    Google Scholar 

  5. Jarník V.: On the theory of homogeneous linear diophantine approximations. Czech Math. J. 4(79), 330–353 (1954)

    Google Scholar 

  6. Khintchine A.Y.: Zur metrischen Theorie der Diophantischen Approximationen. Math. Z. 24, 706–714 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  7. Khintchine, A.Y.: Über eine Klasse linearer Diophantischer Approximationen. Rend. Circ. Math. Palermo 50, 170–195

  8. Laurent M.: Exponents of Diophantine approximation in dimension two. Can. J. Math. 61(1), 165–189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mahler K.: On compound convex bodies I, II. Proc. Lond. Math. Soc. 5(3), 358–384 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  10. Minkowski H.: Geometrie der Zahlen. Teubner Verlag, Leipzig (1910)

    MATH  Google Scholar 

  11. Moshchevitin N.G.: Khintchines singular diophantine systems and their applications. Russian Math. Surveys 65(3), 433–511 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Moshchevitin, N.G.: Proof of W.M. Schmidt’s conjecture concerning successive minima of a lattice. Preprint. arXiv:0804.0120

  13. Moshchevitin, N.G.: Exponents for three-dimensional simultaneous Diophantine approximations. Preprint. arXiv:1009.0987

  14. Roy D.: On two exponents of approximation related to a number and its square. Can. J. Math. 59(1), 211–224 (2007)

    Article  MATH  Google Scholar 

  15. Schmidt W.M., Summerer L.: Parametric geometry of numbers and applications. Acta Arithmetica 140(1), 67–91 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schmidt, W.M.: Open problems in Diophantine approximation. Diophantine Approximations and Transcendental Numbers (Luminy, 1982). Progr. Math., vol. 31, pp. 271–287. Birkhäuser, Boston (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonhard Summerer.

Additional information

Communicated by J. Schoißengeier.

L. Summerer was supported by FWF grant P22794-N13.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, W.M., Summerer, L. Diophantine approximation and parametric geometry of numbers. Monatsh Math 169, 51–104 (2013). https://doi.org/10.1007/s00605-012-0391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-012-0391-z

Keywords

Mathematics Subject Classification (2000)

Navigation