Abstract
Dirichlet’s Theorem on simultaneous approximation involves a parameter Q. It can be derived from Minkowski’s geometry of numbers involving a symmetric convex body depending on Q. Therefore it is natural to study parametric Geometry of Numbers. In turn, this will shed new light on diophantine approximation.
Similar content being viewed by others
References
Bugeaud Y., Laurent M.: On exponents of homogeneous and inhomogeneous Diophantine approximation. Mosc. Math. J. 5(4), 747–766 (2005)
Bugeaud, Y., Laurent, M.: Exponents of Diophantine Approximation. Diophantine Geometry. CRM Series 4, pp. 101–121. Ed. Normale, Pisa (2007)
Bugeaud Y., Laurent M.: On transfer inequalities in diophantine approximation II. Math. Z. 265(2), 249–262 (2010)
Jarník V.: Zum Khintchineschen Übertragungssatz. Trav. Inst. Math. Tbilissi 3, 193–212 (1938)
Jarník V.: On the theory of homogeneous linear diophantine approximations. Czech Math. J. 4(79), 330–353 (1954)
Khintchine A.Y.: Zur metrischen Theorie der Diophantischen Approximationen. Math. Z. 24, 706–714 (1926)
Khintchine, A.Y.: Über eine Klasse linearer Diophantischer Approximationen. Rend. Circ. Math. Palermo 50, 170–195
Laurent M.: Exponents of Diophantine approximation in dimension two. Can. J. Math. 61(1), 165–189 (2009)
Mahler K.: On compound convex bodies I, II. Proc. Lond. Math. Soc. 5(3), 358–384 (1955)
Minkowski H.: Geometrie der Zahlen. Teubner Verlag, Leipzig (1910)
Moshchevitin N.G.: Khintchines singular diophantine systems and their applications. Russian Math. Surveys 65(3), 433–511 (2010)
Moshchevitin, N.G.: Proof of W.M. Schmidt’s conjecture concerning successive minima of a lattice. Preprint. arXiv:0804.0120
Moshchevitin, N.G.: Exponents for three-dimensional simultaneous Diophantine approximations. Preprint. arXiv:1009.0987
Roy D.: On two exponents of approximation related to a number and its square. Can. J. Math. 59(1), 211–224 (2007)
Schmidt W.M., Summerer L.: Parametric geometry of numbers and applications. Acta Arithmetica 140(1), 67–91 (2009)
Schmidt, W.M.: Open problems in Diophantine approximation. Diophantine Approximations and Transcendental Numbers (Luminy, 1982). Progr. Math., vol. 31, pp. 271–287. Birkhäuser, Boston (1983)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J. Schoißengeier.
L. Summerer was supported by FWF grant P22794-N13.
Rights and permissions
About this article
Cite this article
Schmidt, W.M., Summerer, L. Diophantine approximation and parametric geometry of numbers. Monatsh Math 169, 51–104 (2013). https://doi.org/10.1007/s00605-012-0391-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00605-012-0391-z