Skip to main content
Log in

How large are the level sets of the Takagi function?

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Let T be Takagi’s continuous but nowhere-differentiable function. This paper considers the size of the level sets of T both from a probabilistic point of view and from the perspective of Baire category. We first give more elementary proofs of three recently published results. The first, due to Z. Buczolich, states that almost all level sets (with respect to Lebesgue measure on the range of T) are finite. The second, due to J. Lagarias and Z. Maddock, states that the average number of points in a level set is infinite. The third result, also due to Lagarias and Maddock, states that the average number of local level sets contained in a level set is 3/2. In the second part of the paper it is shown that, in contrast to the above results, the set of ordinates y with uncountably infinite level sets is residual, and a fairly explicit description of this set is given. The final result of the paper is an answer to a question of Lagarias and Maddock: it is shown that most level sets (in the sense of Baire category) contain infinitely many local level sets, and that a continuum of level sets even contain uncountably many local level sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaart, P.C.: On the distribution of the cardinalities of level sets of the Takagi function. http://arxiv.org/abs/1107.0712v2 (2011, preprint)

  2. Allaart P.C., Kawamura K.: The improper infinite derivatives of Takagi’s nowhere-differentiable function. J. Math. Anal. Appl. 372(2), 656–665 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Amo E., Bhouri I., Díaz Carrillo M., Fernández-Sánchez J.: The Hausdorff dimension of the level sets of Takagi’s function. Nonlinear Anal. 74(15), 5081–5087 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balasubramanian R., Kanemitsu S., Yoshimoto M.: Euler products, Farey series, and the Riemann hypothesis. II. Publ. Math. Debrecen 69(1–2), 1–16 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Billingsley P.: Van der Waerden’s continuous nowhere differentiable function. Am. Math. Mon. 89(9), 691 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borsuk K.: Sur l’ensemble de valeurs qu’une function continue prend une infinité de fois. Fund. Math. 11, 278–284 (1928)

    MATH  Google Scholar 

  7. Buczolich Z.: Irregular 1-sets on the graphs of continuous functions. Acta Math. Hungar. 121(4), 371–393 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cater F.S.: On van der Waerden’s nowhere differentiable function. Am. Math. Mon. 91(5), 307–308 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Delange H.: Sur la fonction sommatoire de la fonction “somme des chiffres”. Enseignement Math. 21, 31–47 (1975)

    MathSciNet  MATH  Google Scholar 

  10. Feller W.: An introduction to probability theory and its applications, vol. I, 3rd edn. Wiley, New York (1968)

    Google Scholar 

  11. Frankl P., Matsumoto M., Ruzsa I.Z., Tokushige N.: Minimum shadows in uniform hypergraphs and a generalization of the Takagi function. J. Combin. Theory Ser. A 69(1), 125–148 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guu C.J.: The McFunction [The Takagi function]. Selected topics in discrete mathematics (Warsaw, 1996). Discrete Math. 213(1–3), 163–167 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hildebrandt T.H.: A simple continuous function with a finite derivative at no point. Am. Math. Mon. 40(9), 547–548 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kahane J.-P.: Sur l’exemple, donné par M. de Rham, d’une fonction continue sans dérivée. Enseignement Math. 5, 53–57 (1959)

    MathSciNet  MATH  Google Scholar 

  15. Kechris A.S.: Classical Descriptive Set Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  16. Knuth D.E.: The Art of Computer Programming, vol. 4, Fasc. 3. Addison-Wesley, Upper Saddle River (2005)

    Google Scholar 

  17. Krüppel M.: On the improper derivatives of Takagi’s continuous nowhere differentiable function. Rostock. Math. Kolloq. 65, 3–13 (2010)

    MATH  Google Scholar 

  18. Lagarias, J.C., Maddock, Z.: Level sets of the Takagi function: local level sets, arXiv:1009.0855v5 (2011)

  19. Lagarias, J.C., Maddock, Z.: Level sets of the Takagi function: generic level sets, arXiv:1011.3183v4 (2011)

  20. Maddock Z.: Level sets of the Takagi function: Hausdorff dimension. Monatsh. Math. 160(2), 167–186 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tabor J., Tabor J.: Takagi functions and approximate midconvexity. J. Math. Anal. Appl. 356(2), 729–737 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Takagi, T.: A simple example of the continuous function without derivative. Phys. Math. Soc. Japan 1, 176–177 (1903). Kuroda S (ed.) The Collected Papers of Teiji Takagi. Iwanami, Tokyo, pp. 5–6 (1973)

  23. Trollope J.R.: An explicit expression for binary digital sums. Math. Mag. 41, 21–25 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  24. van der Waerden B.W.: Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion. Math. Z. 32, 474–475 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yamaguti, M., Hata, M., Kigami, J.: Mathematics of Fractals. Translations of Mathematical Monographs, vol. 167. American Mathematical Society, Providence (1997) (Translation from Japanese of 1993 original.)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter C. Allaart.

Additional information

Communicated by K. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allaart, P.C. How large are the level sets of the Takagi function?. Monatsh Math 167, 311–331 (2012). https://doi.org/10.1007/s00605-012-0390-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-012-0390-0

Keywords

Mathematics Subject Classification (2000)

Navigation