Ultrametric logarithm laws, II

Abstract

We prove positive characteristic versions of the logarithm laws of Sullivan and Kleinbock–Margulis and obtain related results in metric diophantine approximation.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Athreya, J.: Logarithm laws and shrinking target properties. Proc. Indian Acad. Sci. 119(4), 541–559

  2. 2

    Athreya J., Ghosh A., Prasad A.: Ultrametric logarithm laws, I. Disc. Cont. Dyn. Sys. (DCDS) Ser. S 2(2), 337–348 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3

    Bekka B., de la Harpe P., Vallete A.: Kazhdan’s Property T. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  4. 4

    Beresnevich V., Dickinson H., Velani S.: Measure theoretic laws for Limsup sets. Mem. Am. Math. Soc. 179, 1–91 (2006)

    MathSciNet  Google Scholar 

  5. 5

    Bekka B., Lubotzky A.: Lattices with and lattices without spectral gap. Groups Geom. Dyn. 5(2), 251–264 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6

    Beresnevich V., Velani S.: A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. Math. 164, 971–992 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7

    Borel A., Wallach N.: Continuous cohomology, discrete subgroups, and representation of reductive groups. In: Annals of Mathematics Studies, vol. 94. Princeton University Press, Princeton (1980)

    Google Scholar 

  8. 8

    Bruhat F., Tits J.: Groupes réductifs sur un corps local. Inst. Hautes Etudes Sci. Publ. Math. 41, 5–251 (1972)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9

    Caulk S., Schmidt W.M.: Simultaneous approximation in positive characteristic. Monatsh. Math. 131(1), 1528 (2000)

    MathSciNet  Article  Google Scholar 

  10. 10

    Chernov N., Kleinbock D.: Dynamical Borel–Cantelli lemmas for Gibbs measures. Israel J. Math. 122, 1–27 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11

    Cowling, M.: Sur les coefficients des représentations unitaires des groupes de Lie simples. Analyse harmonique sur les groupes de Lie. Séminaire Nancy Strasbourg 1975–77. Lecture Notes in Mathematics, vol. 739, pp. 132–178. Springer, Berlin (1979)

  12. 12

    Cowling M., Haagerup U., Howe R.: Almost L 2 matrix coefficients. J. Reine Angew. Math. 387, 97–110 (1988)

    MathSciNet  MATH  Google Scholar 

  13. 13

    de Mathan, B.: Approximations diophantiennes dans un corps local. Bull. Soc. Math. France Suppl. Mém. 21–93 (1970)

  14. 14

    Dani S.G.: Divergent trajectories of flows on homogeneous spaces and Diophantine approximation. J. Reine Angew. Math. 359, 55–89 (1985)

    MathSciNet  MATH  Google Scholar 

  15. 15

    Einsiedler M., Margulis G., Venkatesh A.: Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces. Invent. Math. 177(1), 137–212 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16

    Howe R.E., Moore C.C.: Asymptotic properties of unitary representations. J. Funct. Anal. 32, 72–96 (1979)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17

    Ghosh A.: Metric diophantine approximation over a local field of positive characteristic. J. Num. Theory 124(2), 454–469 (2007)

    MATH  Article  Google Scholar 

  18. 18

    Gorodnik A., Maucourant F., Oh H.: Manin’s and Peyre’s conjectures on rational points and adelic mixing. Ann. Sci. Ecole Norm. Sup. 41, 47–97 (2008)

    MathSciNet  Google Scholar 

  19. 19

    Gorodnik A., Nevo A.: The Ergodic theory of lattice subgroups. Annals of Mathematics Studies, vol. 172. Princeton University Press, Princeton (2010)

    Google Scholar 

  20. 20

    Groshev A.V.: Une théoréme sur les systémes des formes linéaires. Dokl. Akad. Nauk SSSR 9, 151–152 (1938)

    Google Scholar 

  21. 21

    Hersonsky S., Paulin F.: A logarithm law for automorphism groups of trees. Arch. Math. (Basel) 88, 97–108 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22

    Hersonsky S., Paulin F.: On the almost sure spiraling of geodesics in negatively curved manifolds. J. Differ. Geom. 85, 271–314 (2010)

    MathSciNet  MATH  Google Scholar 

  23. 23

    Hersonsky S., Paulin F.: Hausdorff dimension of diophantine geodesics in negatively curved manifolds. J. fur die reine und angewandte Mathematik 539, 29–43 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24

    Hersonsky, S., Paulin, F.: Diophantine approximation in negatively curved manifolds and in the Heisenberg group. Rigidity in Dynamics and Geometry (Cambridge, 2000), pp. 203–226. Springer, Berlin (2002)

  25. 25

    Inoue K.: The metric simultaneous diophantine approximations over formal power series. J. de theorie des nombres de Bordeaux 15(1), 151–161 (2003)

    MATH  Article  Google Scholar 

  26. 26

    Khintchine A.: Einige Sätze über Kettenbrüche mit Anwendungen auf die Theorie der Diophantischen Approximationen. Math. Ann. 92, 115–125 (1924)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27

    Kleinbock D., Margulis G.: Logarithm laws for flows on homogeneous spaces. Invent. Math. 138, 451–494 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28

    Kochen S., Stone C.: A note on the Borel Cantelli lemma, III. J. Math. 8, 248–251 (1964)

    MathSciNet  MATH  Google Scholar 

  29. 29

    Kristensen S.: On well-approximable matrices in a field of formal series. Math. Proc. Camb. Philos. Soc. 135(2), 255–268 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30

    Lasjaunias A.: A survey of diophantine approximation in fields of power series. Monatsh. Math. 130, 211–229 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31

    Liverani C.: On contact Anosov flows. Ann. Math. (2) 159(3), 1275–1312 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32

    Morishita, M.: A mean value theorem in adele geometry. Algebraic number theory and Fermat’s problem (Japanese) (Kyoto, 1995), pp. 1–11. Sūrikaisekikenkyūsho Kōkyūroku No. 971 (1996)

  33. 33

    Mozes S.: Actions of Cartan subgroups. Israel J. Math. 90(1–3), 253–294 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34

    Oh H.: Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants. Duke Math. J. 113, 133–192 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35

    Parkonnen J., Paulin F.: Prescribing the behaviour of geodesics in negative curvature. Geom. Topol. 14, 277–392 (2010)

    MathSciNet  Article  Google Scholar 

  36. 36

    Parkonnen, J., Paulin, F.: Spiraling spectra of geodesics in negative curvature. Math. Z. 268(1–2), 101–142 (2011)

    MathSciNet  Article  Google Scholar 

  37. 37

    Parkonnen J., Paulin F.: Sur les rayons de Hall en approximation diophantienne. C. R. Math. Acad. Sci. Paris Ser. I 344, 611–614 (2007)

    Article  Google Scholar 

  38. 38

    Parkonnen J., Paulin F.: On the closedness of approximation spectra. J. de thorie des nombres de Bordeaux 21, 701–710 (2009)

    Google Scholar 

  39. 39

    Paulin F.: Groupe modulaire, fractions continues et approximation diophantienne en caractéristique p. Geom. Dedic 95, 65–85 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40

    Prasad, A.: The almost unramified discrete spectrum for split semisimple groups over a rational function field. PhD thesis, The Univeristy of Chicago, Chicago (2001)

  41. 41

    Prasad Amritanshu: Almost unramified discrete spectrum for split groups over F q (t). Duke Math. J. 113(2), 237257 (2002)

    Article  Google Scholar 

  42. 42

    Prasad Amritanshu: Reduction theory for a rational function field. Proc. Indian Acad. Sci. (Math. Sci.) 113(2), 153–163 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  43. 43

    Prasad, A.: On Bernstein’s presentation of Iwahori–Hecke algebras and representations of split reductive groups over non-Archimedean local fields. Bull. Kerala Math. Assoc. 2005, Special Issue, 3151 (2007)

  44. 44

    Schmidt W.M.: On continued fractions and Diophantine approximation in power series fields. Acta. Arith. 95(2), 139–166 (2000)

    MathSciNet  MATH  Google Scholar 

  45. 45

    Siegel C.: A mean value theorem in geometry of numbers. Ann. Math. (2) 46, 340–347 (1945)

    MATH  Article  Google Scholar 

  46. 46

    Skriganov M.: Ergodic theory on SL(n), diophantine approximations and anomalies in the lattice point problem. Invent. Math. 132, 1–72 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47

    Sprindzhuk V.G.: Metric Theory of Diophantine Approximations. Wiley, New York (1979)

    MATH  Google Scholar 

  48. 48

    Sullivan D.: Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics. Acta Math. 149, 215–237 (1982)

    MathSciNet  MATH  Article  Google Scholar 

  49. 49

    Weil A.: Sur quelques resultats de Siegel. Summa Bras. Math. 1, 21–39 (1946)

    MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anish Ghosh.

Additional information

Athreya was partially supported by an NSF postdoctoral fellowship DMS 0603636 and NSF Grant 1069153. Ghosh was partially supported by an EPSRC Grant.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Athreya, J.S., Ghosh, A. & Prasad, A. Ultrametric logarithm laws, II. Monatsh Math 167, 333–356 (2012). https://doi.org/10.1007/s00605-012-0376-y

Download citation

Keywords

  • Logarithm laws
  • Diophantine approximation
  • Positive characteristic

Mathematics Subject Classification (2000)

  • 11J83
  • 11K60
  • 37D40
  • 37A17
  • 22E40