Skip to main content
Log in

Global asymptotic stability for half-linear differential systems with generalized almost periodic coefficients

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The following system considered in this paper:

$$x' = -\,e(t)x + f(t)\phi_{p^*}(y), \qquad y'= -\,(p-1)g(t)\phi_p(x) - (p-1)h(t)y,$$

where \({p > 1, p^* > 1 (1/p + 1/p^* = 1)}\) and \({\phi_q(z) = |z|^{q-2}z}\) for q = p or q = p *. This system is referred to as a half-linear system. The coefficient f(t) is assumed to be bounded, but the coefficients e(t), g(t) and h(t) are not necessarily bounded. Sufficient conditions are obtained for global asymptotic stability of the zero solution. Our results can be applied to not only the case that the signs of f(t) and g(t) change like the periodic function but also the case that f(t) and g(t) irregularly have zeros. Some suitable examples are included to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal R.P., Grace S.R., O’Regan D.: Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  2. Antosiewicz, H.A.: A survey of Lyapunov’s second method. In: Annals of Mathematics Studies, vol. 41, pp. 141–166. Princeton University Press, Princeton (1958)

  3. Athanassov Z.S.: Total stability of sets for nonautonomous differential systems. Trans. Am. Math. Soc. 295, 649–663 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balan R.: An extension of Barbashin–Krasovskii–LaSalle theorem to a class of nonautonomous systems. Nonlinear Dyn. Syst. Theory 8, 225–268 (2008)

    MathSciNet  Google Scholar 

  5. Ballieu R.J., Peiffer K.: Attractivity of the origin for the equation \({\ddot{x} + f(t,\dot{x},\ddot{x})|\dot{x}|^{\alpha} \dot{x}}+\, g(x) = 0\). J. Math. Anal. Appl. 65, 321–332 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbašin E.A., Krasovskiĭ N.N.: On stability of motion in the large. Dokl. Akad. Nauk SSSR (N.S.) 86, 453–456 (1952)

    Google Scholar 

  7. Besicovitch A.S.: Almost periodic functions. Dover, New York (1955)

    MATH  Google Scholar 

  8. Bohr H.: Almost periodic functions. Chelsea, New York (1947)

    Google Scholar 

  9. Burton, T.A.: An extension of Liapunov’s direct method. J. Math. Anal. Appl. 28, 545–552 (1969); Correction: An extension of Liapunov’s direct method. J. Math. Anal. Appl. 32, 689–691 (1970)

    Google Scholar 

  10. Cheban D.N.: Asymptotically almost periodic solutions of differential equations. Hindawi Pub. Corp., New York (2009)

    Book  MATH  Google Scholar 

  11. Chetayev N.G.: The stability of motion. Pergamon Press, New York (1961)

    Google Scholar 

  12. Corduneanu C.: Almost periodic functions. Chelsea, New York (1989)

    MATH  Google Scholar 

  13. Corduneanu C.: Almost periodic oscillations and waves. Springer, New York (2009)

    Book  MATH  Google Scholar 

  14. Došlý O.: Half-linear differential equations. In: Cañada, A., Drábek, P., Fonda, A. (eds) Handbook of differential equations, ordinary differential equations I, pp. 161–357. Elsevier, Amsterdam (2004)

    Google Scholar 

  15. Došlý O., Řehák P.: Half-linear differential equations. North-Holland Mathematics Studies, vol. 202. Elsevier, Amsterdam (2005)

    Google Scholar 

  16. Fink A.M.: Almost periodic differential equations. Lecture Notes in Mathematics, vol. 377. Springer, New York (1974)

    Google Scholar 

  17. Fréchet M.: Les fonctions asymptotiquement presque-périodiques. Rev. Sci. 79, 341–354 (1941)

    MATH  Google Scholar 

  18. Haddock J.R.: On Liapunov functions for nonautonomous systems. J. Math. Anal. Appl. 47, 599–603 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haddock, J.R.: Stability theory for nonautonomous systems. In: Cesari, L., Hale, J., LaSalle, J.P. (eds.) Dynamical Systems: Proc. Internat. Sympos. II, pp. 271–274. Academic Press, New York (1976)

  20. Hale, J.K.: Ordinary differential equations. Wiley, New York (1969); (revised) Krieger, Malabar (1980)

  21. Hatvani, L.: On certain indications of stability with two Liapunov functions. Prikl. Mat. Meh. 39, 172–177 (1975); translated as J. Appl. Math. Mech. 39, 160–166 (1975)

  22. Hatvani L.: A generalization of the Barbashin–Krasovskij theorems to the partial stability in nonautonomous systems. In: Farkas M. (eds). Qualitative theory of differential equations I, Colloq. Math. Soc. János Bolyai, vol. 30, pp. 381–409. North-Holland, Amsterdam (1981)

    Google Scholar 

  23. Hatvani L.: On partial asymptotic stability by the method of limiting equation. Ann. Math. Pura Appl. (4) 139, 65–82 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hatvani L.: On the uniform attractivity of solutions of ordinary differential equations by two Lyapunov functions. Proc. Jpn. Acad. 67, 162–167 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hatvani L.: On the asymptotic stability for a two-dimensional linear nonautonomous differential system. Nonlinear Anal. 25, 991–1002 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hatvani L.: The effect of damping on the stability properties of equilibria of non-autonomous systems. J. Appl. Math. Mechs. 65, 707–713 (2001)

    Article  MathSciNet  Google Scholar 

  27. Hatvani L., Krisztin T., Totik V.: A necessary and sufficient condition for the asymptotic stability of the damped oscillator. J. Differ. Equ. 119, 209–223 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hino Y., Naito T., Minh N.V., Shin J.S.: Almost periodic solutions of differetial equations in Banach Spaces. Stability and control: theory, methods and applications, vol. 15. Taylor & Francis, New York (2002)

    Google Scholar 

  29. Ignatyev A.O.: On the stability of equilibrium for almost periodic systems. Nonlinear Anal. 29, 957–962 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jiang L.-P.: A generalization of Barbashin–Krasovski theorem. J. Math. Anal. Appl. 326, 1379–1382 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ko Y.: An asymptotic stability and a uniform asymptotic stability for functional-differential equations. Proc. Am. Math. Soc. 119, 535–545 (1993)

    MATH  Google Scholar 

  32. Krasovskiĭ N.N.: Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay. Stanford University Press, Stanford (1963)

    MATH  Google Scholar 

  33. Lakshmikantham V.: Vector Lyapunov functions and conditional stability. J. Math. Anal. Appl. 10, 368–377 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  34. LaSalle J.P.: Stability theory for ordinary differential equations. J. Differ. Equ. 4, 57–65 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  35. LaSalle, J.P.: Stability theory and invariance principles. In: Cesari, L., Hale, J., LaSalle, J.P. (eds.) Dynamical systems: Proc. Internat. Sympos. I, pp. 211–222. Academic Press, New York (1976)

  36. LaSalle J.P., Lefschetz S.: Stability by Liapunov’s direct method with applications. Mathematics in science and engineering, vol. 4. Academic Press, New York (1961)

    Google Scholar 

  37. Lee T.-C., Jiang Z.-P.: A generalization of Krasovskii–LaSalle theorem for nonlinear time-varying systems: converse results and applications. IEEE Trans. Autom. Control 50, 1147–1163 (2005)

    Article  MathSciNet  Google Scholar 

  38. Levin J.J., Nohel J.A.: Global asymptotic stability for nonlinear systems of differential equations and application to reactor dynamics. Arch. Ration. Mech. Anal. 5, 194–211 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  39. Levitan B.M., Zhibov V.V.: Almost periodic functions and differential equations. Cambridge University Press, New York (1982)

    MATH  Google Scholar 

  40. Liapounoff, A.M.: Problème général de la stabilité du mouvement. In: Annals of Mathematics Studies, vol. 17. Princeton University Press, Princeton (1949)

  41. Maratschkow V.: Über einen Liapounoffschen satz. Bull. Soc. Phys. Math. Kazan (3) 12, 171–174 (1940)

    MathSciNet  Google Scholar 

  42. Massera J.L.: On Liapounoff’s conditions of stability. Ann. Math. (2) 50, 705–721 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  43. Massera, J.L.: Contributions to stability theory. Ann. Math. (2) 64, 182–206 (1956); Erratum: Contributions to stability theory. Ann. Math. (2) 68, 202 (1958)

  44. Matrosov, V.M.: On the stability of motion. Prikl. Mat. Meh. 26, 885–895 (1962); translated as J. Appl. Math. Mech. 26, 1337–1353 (1963)

  45. Mazenc F., Nešić D.: Lyapunov functions for time-varying systems satisfying generalized conditions of Matrosov theorem. Math. Control Signals Syst. 19, 151–182 (2007)

    Article  MATH  Google Scholar 

  46. Nosov, V.R.: A criterion of Matrosov stability for functional-differential equations of lagging type. Differencial’nye Uravnenija 13, 1202–1207, 1346 (1977)

    Google Scholar 

  47. Rouche N.: On the stability of motion. Int. J. Non-Linear Mech. 3, 295–306 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rouche N., Habets P., Laloy M.: Stability theory by Liapunov’s direct method. Applied mathematical sciences, vol. 22. Springer, New York (1977)

    Google Scholar 

  49. Salvadori L.: Una generalizzazione di alcuni teoremi di Matrosov. Ann. Math. Pura Appl. (4) 84, 83–93 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  50. Salvadori, L.: Famiglie ad un parametro di funzioni di Liapunov nello studio della stabilitá. In: Symposia Math. VI, pp. 309–330. Academic Press, London (1971)

  51. Sugie J., Onitsuka M.: Global asymptotic stability for damped half-linear differential equations. Acta Sci. Math. (Szeged) 73, 613–636 (2007)

    MathSciNet  MATH  Google Scholar 

  52. Sugie J., Onitsuka M.: Global asymptotic stability for half-linear differential equations with coefficients of indefinite sign. Arch. Math. (Brno) 44, 317–334 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Sugie J., Hata S., Onitsuka M.: Global asymptotic stability for half-linear differential systems with periodic coefficients. J. Math. Anal. Appl. 371, 95–112 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yoshizawa T.: Note on the boundedness and the ultimate boundedness of solutions of x′ = F(t, x). Mem. Coll. Sci. Univ. Kyoto, Ser. A. Math. 29, 275–291 (1955)

    MathSciNet  MATH  Google Scholar 

  55. Yoshizawa T.: Asymptotic behavior of solutions of a system of differential equations. Contrib. Differ. Equ. 1, 371–387 (1963)

    MathSciNet  Google Scholar 

  56. Yoshizawa T.: Stability theory and the existence of periodic solutions and almost periodic solutions. Applied mathematical sciences, vol. 14. Springer, New York (1975)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitsuro Sugie.

Additional information

Communicated by Ansgar Jüngel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugie, J., Hata, S. Global asymptotic stability for half-linear differential systems with generalized almost periodic coefficients. Monatsh Math 166, 255–280 (2012). https://doi.org/10.1007/s00605-011-0297-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-011-0297-1

Keywords

Mathematics Subject Classification (2000)

Navigation