Skip to main content
Log in

An upper bound for the power pseudovariety PCS

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

It is a celebrated result in finite semigroup theory that the equality of pseudovarieties PG = BG holds, where PG is the pseudovariety of finite monoids generated by all power monoids of finite groups and BG is the pseudovariety of all block groups, that is, the pseudovariety of all finite monoids all of whose regular \({\fancyscript{D}}\)-classes have the property that the corresponding principal factors are inverse semigroups. Moreover, it is well known that BG = JG, where JG is the pseudovariety of finite monoids generated by the Mal’cev product of the pseudovarieties J and G of all finite \({\fancyscript{J}}\)-trivial monoids and of all finite groups, respectively. In this paper, a more general kind of finite semigroups is considered; namely, the so-called aggregates of block groups are introduced. It follows that the class AgBG of all aggregates of block groups forms a pseudovariety of finite semigroups. It is next proved that AgBG = JCS, where JCS is the pseudovariety of finite semigroups generated by the Mal’cev product of the pseudovarieties J and CS, whilst, this once, J stands for the pseudovariety of all finite \({\fancyscript{J}}\)-trivial semigroups and CS stands for the pseudovariety of all finite completely simple semigroups. Furthermore, it is shown that the power pseudovariety PCS, which is the pseudovariety of finite semigroups generated by all power semigroups of finite completely simple semigroups, has the property that \({{\bf PCS}\subseteq{\bf AgBG}}\). However, the question whether this inclusion is strict or not is left open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida J.: Finite Semigroups and Universal Algebra. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  2. Ash C.J.: Inevitable graphs: a proof of the type II conjecture and some related decision procedures. Int. J. Algebra Comput. 1, 127–146 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auinger K., Steinberg B.: The geometry of profinite graphs with applications to free groups and finite monoids. Trans. Am. Math. Soc. 356, 805–851 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auinger K., Steinberg B.: Constructing divisions into power groups. Theor. Comput. Sci. 341, 1–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auinger K., Steinberg B.: A constructive version of the Ribes-Zalesskiĭ product theorem. Math. Z. 250, 287–297 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Auinger K., Steinberg B.: On power groups and embedding theorems for relatively free profinite monoids. Math. Proc. Camb. Philos. Soc. 138, 211–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Auinger K., Steinberg B.: Varieties of finite supersolvable groups with the M. Hall property. Math. Ann. 335, 853–877 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Henckell K., Rhodes J.: Reduction theorem for the type-II conjecture for finite monoids. J. Pure Appl. Algebra 67, 269–284 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Henckell, K., Rhodes, J.: The theorem of Knast, the PG = BG and Type-II conjectures. In: Monoids and Semigroups with Applications. Proceedings of the Workshop on Monoids held at the University of California, Berkeley, Calif., 1989, pp. 453–463. World Scientific Publishing, River Edge (1991)

  10. Henckell K., Margolis S.W., Pin J.-E., Rhodes J.: Ash’s type II theorem, profinite topology and Malcev products: part I. Int. J. Algebra Comput. 1, 411–436 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Higgins P.M., Margolis S.W.: Finite aperiodic semigroups with commuting idempotents and generalizations. Israel J. Math. 116, 367–380 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Howie J.M.: An Introduction to Semigroup Theory. Academic Press, London (1976)

    MATH  Google Scholar 

  13. Knast R.: Some theorems on graph congruences. RAIRO Inform. Théor. 17, 331–342 (1983)

    MathSciNet  Google Scholar 

  14. Margolis, S.W., Pin, J.-E.: Varieties of finite monoids and topology for the free monoid. In: Proceedings of the 1984 Marquette Conference on Semigroups, held at Marquette University, Milwaukee, Wis., 1984, pp. 113–129. Marquette Univ., Milwaukee (1985)

  15. Petrich M.: Inverse Semigroups. Wiley, New York (1984)

    MATH  Google Scholar 

  16. Petrich M., Reilly N.R.: Completely Regular Semigroups. Wiley, New York (1999)

    MATH  Google Scholar 

  17. Pin, J.-E.: BG = PG: A success story. In: Semigroups, Formal Languages and Groups. Proceedings of the NATO Advanced Study Institute held at the University of York, York, 1993, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 466, pp. 33–47. Kluwer, Dordrecht (1995)

  18. Pin J.-E., Reutenauer C.: A conjecture on the Hall topology for the free group. Bull. Lond. Math. Soc. 23, 356–362 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rhodes, J.: New techniques in global semigroup theory. In: Semigroups and Their Applications. Proceedings of the International Conference on Algebraic Theory of Semigroups and its Applications held at California State University, Chico, Calif., 1986, pp. 169–181. D. Reidel Publishing Co., Dordrecht (1987)

  20. Ribes L., Zalesskiĭ P.A.: On the profinite topology on a free group. Bull. Lond. Math. Soc. 25, 37–43 (1993)

    Article  MATH  Google Scholar 

  21. Steinberg, B.: PG = BG: redux. In: Semigroups. Proceedings of the International Conference held at the University of Minho, Braga, Portugal, 1999, pp. 181–190. World Scientific Publishing, River Edge (2000)

  22. Steinberg B.: Polynomial closure and topology. Int. J. Algebra Comput. 10, 603–624 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Steinberg B.: A note on the equation PH = J*H. Semigroup Forum 63, 469–474 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Steinberg B.: Inevitable graphs and profinite topologies: some solutions to algorithmic problems in monoid and automata theory, stemming from group theory. Int. J. Algebra Comput. 11, 25–71 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Steinberg B.: Finite state automata: a geometric approach. Trans. Am. Math. Soc. 353, 3409–3464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Steinberg B.: Inverse automata and profinite topologies on a free group. J. Pure Appl. Algebra 167, 341–359 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Steinberg B.: A note on the power semigroup of a completely simple semigroup. Semigroup Forum 76, 584–586 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tilson B.: Categories as algebra: an essential ingredient in the theory of monoids. J. Pure Appl. Algebra 48, 83–198 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Kad’ourek.

Additional information

Communicated by John S. Wilson.

Research partially supported by the Ministry of Education of the Czech Republic under the project MSM 0021622409.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kad’ourek, J. An upper bound for the power pseudovariety PCS . Monatsh Math 166, 411–440 (2012). https://doi.org/10.1007/s00605-011-0285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-011-0285-5

Keywords

Mathematics Subject Classification (2000)

Navigation