Monatshefte für Mathematik

, Volume 164, Issue 2, pp 133–156 | Cite as

Transformation formulas associated with integrals involving the Riemann Ξ-function

  • Atul DixitEmail author


Using residue calculus and the theory of Mellin transforms, we evaluate integrals of a certain type involving the Riemann Ξ-function, which give transformation formulas of the form F(z, α) = F(z, β), where αβ = 1. This gives a unified approach for generating certain modular transformation formulas, including a famous formula of Ramanujan and Guinand.


Riemann Ξ-function Hurwitz zeta function Modified Bessel function Residue theorem Mellin transform Ramanujan 

Mathematics Subject Classification (2000)

Primary 11M06 Secondary 11M35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berndt, B.C.,Dixit A.: A transformation formula involving the Gamma and Riemann zeta functions in Ramanujan’s Lost Notebook. In: Alladi, K., Klauder, J., Rao, C.R. (eds.) The Legacy of Alladi Ramakrishnan in the Mathematical Sciences. Springer, New York (2010, to appear)Google Scholar
  2. 2.
    Berndt, B.C., Lee, Y., Sohn, J.: In: Alladi, K. (ed.) The formulas of Koshliakov and Guinand in Ramanujan’s lost notebook, Surveys in Number Theory, Series: Developments in Mathematics, vol. 17, pp. 21–42. Springer, New York (2008)Google Scholar
  3. 3.
    Bump D.: Autmorphic forms and representations. Cambridge Studies in Advanced Mathematics, vol. 55. Cambridge University Press, Cambridge (1997)Google Scholar
  4. 4.
    Dixit, A.: Analogues of a transformation formula of Ramanujan (submitted)Google Scholar
  5. 5.
    Dixit, A.: Transformation formulas associated with integrals involving the Riemann Ξ-function and Ramanujan’s cubic theory of elliptic functions, Ph.D. thesis, University of Illinois at Urbana-Champaign (2011)Google Scholar
  6. 6.
    Dixit, A.: Series transformations and integrals involving the Riemann Ξ-function. J. Math. Anal. Appl. (to appear)Google Scholar
  7. 7.
    Goldfeld, D.: Automorphic forms and L-functions for the group \({{GL}(n,\mathbb R)}\). Cambridge Studies in Advanced Mathematics, vol. 99. Cambridge University Press, Cambridge (2006)Google Scholar
  8. 8.
    Oberhettinger F.: Tables of Mellin Transforms. Springer, New York (1974)zbMATHGoogle Scholar
  9. 9.
    Gradshteyn, I.S., Ryzhik, I.M. (eds): Table of Integrals, Series, and Products, 5th edn. Academic Press, San Diego (1994)zbMATHGoogle Scholar
  10. 10.
    Guinand A.P.: Some rapidly convergent series for the Riemann ξ-function. Q. J. Math. (Oxford) 6, 156–160 (1955)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Magnus W., Oberhettinger F., Soni R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin (1966)zbMATHGoogle Scholar
  12. 12.
    Ramanujan S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988)zbMATHGoogle Scholar
  13. 13.
    Ramanujan S.: New expressions for Riemann’s functions ξ(s) and Ξ(t). Q. J. Math. 46, 253–260 (1915)zbMATHGoogle Scholar
  14. 14.
    Titchmarsh E.C.: The Theory of the Riemann Zeta Function. Clarendon Press, Oxford (1986)zbMATHGoogle Scholar
  15. 15.
    Watson G.N.: Some self-reciprocal functions. Q. J. Math. (Oxford) 2, 298–309 (1931)CrossRefGoogle Scholar
  16. 16.
    Watson G.N.: Theory of Bessel Functions, 2nd edn. University Press, Cambridge (1966)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations