Advertisement

Monatshefte für Mathematik

, Volume 164, Issue 2, pp 119–132 | Cite as

Units of compatible nearrings

  • Erhard Aichinger
  • Peter Mayr
  • John D. P. Meldrum
  • Gary L. PetersonEmail author
  • Stuart D. Scott
Article

Keywords

Nearring Compatible module Unit Idempotent 

Mathematics Subject Classification (2000)

Primary 16Y30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichinger E.: A bound on the number of unary polynomial functions and a decidability result for near-rings. Int. J. Algebra Comput. 15, 279–289 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Fong Y., Kaarli K.: Unary polynomials on a class of groups. Acta Sci. Math. 61, 139–154 (1995)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Lausch H., Nöbauer W.: Algebra of Polynomials. North-Holland, Amsterdam (1973)zbMATHGoogle Scholar
  4. 4.
    Lyons C., Meldrum J.: N-series and tame near-rings. Proc. R. Soc. Edinb. 86A, 153–173 (1980)MathSciNetGoogle Scholar
  5. 5.
    Peterson G.: Projection idempotents in nearrings. Algebra Colloq. 10, 209–218 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Peterson G.: Centralizers and the isomorphism problem for nearrings. Math. Pannon. 17, 3–16 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Peterson G.: Some problems in the theory of nearring modules. Math. Pannon. 20, 109–121 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Peterson G.: The idempotent quiver of a nearring. Algebra Colloq. 16, 463–478 (2009)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Peterson, G.: Compatible extensions of nearrings. Monatsh. Math. (to appear)Google Scholar
  10. 10.
    Pilz G.: Near-rings, Revised Edition. North-Holland, Amsterdam (1983)Google Scholar
  11. 11.
    Scott S.: Tame near-rings and N-groups. Proc. Edinb. Math. Soc. 23, 275–296 (1980)zbMATHCrossRefGoogle Scholar
  12. 12.
    Scott S.: N-Solubility and N-nilpotency in tame N-groups. Algebra Colloq. 5, 425–448 (1998)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Scott S.: Tame fusion. Algebra Colloq. 10, 543–566 (2003)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Scott S.: The Z-constrained conjecture. In: Kiechle, H., Kreuzer, A., Thomsen, M. (eds) Nearrings and Nearfields, pp. 69–168. Springer, Dordrecht (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Erhard Aichinger
    • 1
  • Peter Mayr
    • 1
  • John D. P. Meldrum
    • 2
  • Gary L. Peterson
    • 3
    Email author
  • Stuart D. Scott
    • 4
  1. 1.Institute of Algebra, Johannes Kepler UniversitätLinzAustria
  2. 2.School of MathematicsUniversity of EdinburghEdinburghScotland, UK
  3. 3.Department of Mathematics and StatisticsJames Madison UniversityHarrisonburgUSA
  4. 4.Department of MathematicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations