Skip to main content
Log in

The quantization dimension of the self-affine measures on general Sierpiński carpets

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Let μ be a self-affine measure on a general Sierpiński carpet E. We give a characterization for the upper and lower quantization dimension of μ in terms of revised cylinder sets. Using this characterization, we prove that the quantization dimension D r (μ) of μ exists for all r > 0 under an additional condition. We establish an explicit formula for D r (μ) and show that it increases to the box-counting dimension \({dim_B^* \mu}\) of μ as r tends to infinity. For a class of Sierpiński carpets E and the uniform measures μ on E, we show that the quantization dimension of μ coincides with its box-counting dimension and that the D r (μ)-dimensional upper and lower quantization coefficient of μ are both positive and finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bedford, T.: Crinkly curves, Markov partitions and box dimensions in self-similar sets. PhD Thesis, University of Warwick (1984)

  2. Bucklew J.A., Wise G.L.: Multidimensional asymptotic quantization with rth power distortion measures. IEEE Trans. Inform. Theory 28, 239–247 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Falconer K.J.: Generalized dimensions of measures on self-affine sets. Nonlinearity 12, 877–891 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Graf S.: On Bandt’s tangential distribution for self-similar measures. Monatsh. Math. 120, 223–246 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Graf, S., Luschgy, H.: Foundations of quantization for probability distributons. Lecture Notes in Mathematis, vol. 1730. Springer, Berlin (2000)

  6. Graf S., Luschgy H.: The quantization dimension of self-similar probabilities. Math. Nachr. 241, 103–109 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Graf S., Luschgy H.: The point density measure in the quantization of self-similar probabilities. Math. Proc. Camb. Phil. Soc. 136, 687–717 (2005)

    Article  MathSciNet  Google Scholar 

  8. Gray R., Neuhoff D.: Quantization. IEEE Trans. Inform. Theory 44, 2325–2383 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hua S.: On the dimension of generalized self-similar sets. Acta Math. Appl. Sin. 17(4), 551–558 (1994)

    Google Scholar 

  10. Hua S., Li W.X.: Packing dimension of generalized Moran sets. Progr. Nat. Sci. 6(2), 148–152 (1996)

    MathSciNet  Google Scholar 

  11. Hutchinson J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. King J.F.: The singularity spectrum for general Sierpński carpets. Adv. Math. 116, 1–11 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lindsay L.J., Mauldin R.D.: Quantization dimension for conformal systems. Nonlinearity 15, 189–199 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mcmullen C.: The Hausdorff dimension of general Sierpiński carpets. Nagoya Math. J. 96, 1–9 (1984)

    MathSciNet  MATH  Google Scholar 

  15. Peres Y.: The packing measure of self-affine carpets. Math. Proc. Camb. Phil. Soc. 115, 437–450 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peres Y.: The self-affine carpets of Mcmullen and Bedford have infinite Hausdorff measure. Math. Proc. Camb. Phil. Soc. 116, 513–526 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pötzelberger K.: The quantization dimension of distributions. Math. Proc. Camb. Phil. Soc. 131, 507–519 (2001)

    MATH  Google Scholar 

  18. Zador, P.L.: Development and evaluation of procedures for quantizing multivariate distributions. PhD Thesis, Stanford University (1964)

  19. Zhu S.: Quantization dimension of probability measures supported on Cantor-like sets. J. Math. Anal. Appl. 338, 742–750 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanguo Zhu.

Additional information

S. Zhu is supported by NNSF of China #10671150 and the Project-sponsored by SRF for ROCS, SEM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S. The quantization dimension of the self-affine measures on general Sierpiński carpets. Monatsh Math 162, 355–374 (2011). https://doi.org/10.1007/s00605-009-0176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-009-0176-1

Keywords

Mathematics Subject Classification (2000)

Navigation