Skip to main content
Log in

Modeling and optimization of the ratio of fluorophores: a step towards enhancing the sensitivity of ratiometric probes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In the ratiometric fluorescent (RF) strategy, the selection of fluorophores and their respective ratios helps to create visual quantitative detection of target analytes. This study presents a framework for optimizing ratiometric probes, employing both two-component and three-component RF designs. For this purpose, in a two-component ratiometric nanoprobe designed for detecting methyl parathion (MP), an organophosphate pesticide, yellow-emissive thioglycolic acid-capped CdTe quantum dots (Y-QDs) (analyte-responsive), and blue-emissive carbon dots (CDs) (internal reference) were utilized. Mathematical polynomial equations modeled the emission profiles of CDs and Y-QDs in the absence of MP, as well as the emission colors of Y-QDs in the presence of MP separately. In other two-/three-component examples, the detection of dopamine hydrochloride (DA) was investigated using an RF design based on blue-emissive carbon dots (B-CDs) (internal reference) and N-acetyl L-cysteine functionalized CdTe quantum dots with red/green emission colors (R-QDs/G-QDs) (analyte-responsive). The colors of binary/ternary mixtures in the absence and presence of MP/DA were predicted using fitted equations and additive color theory. Finally, the Euclidean distance method in the normalized CIE XYZ color space calculated the distance between predicted colors, with the maximum distance defining the real-optimal concentration of fluorophores. This strategy offers a more efficient and precise method for determining optimal probe concentrations compared to a trial-and-error approach. The model’s effectiveness was confirmed through experimental validation, affirming its efficacy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Muhammad-Aree S, Teepoo S (2020) On-site detection of heavy metals in wastewater using a single paper strip integrated with a smartphone. Anal Bioanal Chem 412(6):1395–1405

    Article  CAS  PubMed  Google Scholar 

  2. Cao P, Zhu Y, Zhao W, Liu S, Gao H (2019) Chromaticity measurement based on the image method and its application in water quality detection. Water 11(11):2339

    Article  CAS  Google Scholar 

  3. Jiao Y, Gao Y, Meng Y, Lu W, Liu Y, Han H, Shuang S, Li L, Dong C (2019) One-step synthesis of label-free ratiometric fluorescence carbon dots for the detection of silver ions and glutathione and cellular imaging applications. ACS Appl Mater Interfaces 11(18):16822–16829

    Article  CAS  PubMed  Google Scholar 

  4. Zhu X, Han L, Liu H, Sun B (2022) A smartphone-based ratiometric fluorescent sensing system for on-site detection of pyrethroids by using blue-green dual-emission carbon dots. Food Chem 379:132154

    Article  CAS  PubMed  Google Scholar 

  5. Luka G, Nowak E, Kawchuk J, Hoorfar M, Najjaran H (2017) Portable device for the detection of colorimetric assays. Royal Soc Open Sci 4(11):171025

    Article  CAS  Google Scholar 

  6. Coleman B, Coarsey C, Asghar W (2019) Cell phone based colorimetric analysis for point-of-care settings. Analyst 144(6):1935–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shen L, Hagen JA, Papautsky I (2012) Point-of-care colorimetric detection with a smartphone. Lab Chip 12(21):4240–4243

    Article  CAS  PubMed  Google Scholar 

  8. Luo Z, Lv T, Zhu K, Li Y, Wang L, Gooding JJ, Liu G, Liu B (2020) Paper-based ratiometric fluorescence analytical devices towards point-of-care testing of human serum albumin. Angew Chem 132(8):3155–3160

    Article  Google Scholar 

  9. Askim JR, Mahmoudi M, Suslick KS (2013) Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem Soc Rev 42(22):8649–8682

    Article  CAS  PubMed  Google Scholar 

  10. Shen Y, Wei Y, Zhu C, Cao J, Han D-M (2022) Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coord Chem Rev 458:214442

    Article  CAS  Google Scholar 

  11. Luo Z, Lv T, Zhu K, Li Y, Wang L, Gooding JJ, Liu G, Liu B (2020) Paper-based ratiometric fluorescence analytical devices towards point-of-care testing of human serum albumin. Angew Chem Int Ed 59(8):3131–3136

    Article  CAS  Google Scholar 

  12. Lee MH, Kim JS, Sessler JL (2015) Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev 44(13):4185–4191

    Article  CAS  PubMed  Google Scholar 

  13. Bigdeli A, Ghasemi F, Abbasi-Moayed S, Shahrajabian M, Fahimi-Kashani N, Jafarinejad S, Nejad MAF, Hormozi-Nezhad MR (2019) Ratiometric fluorescent nanoprobes for visual detection: design principles and recent advances-a review. Anal Chim Acta 1079:30–58

    Article  CAS  PubMed  Google Scholar 

  14. Yin H-Q, Yang J-C, Yin X-B (2017) Ratiometric fluorescence sensing and real-time detection of water in organic solvents with one-pot synthesis of Ru@MIL-101(Al)–NH2. Anal Chem 89(24):13434–13440

    Article  CAS  PubMed  Google Scholar 

  15. Parolo C, Merkoçi A (2013) Paper-based nanobiosensors for diagnostics. Chem Soc Rev 42(2):450–457

    Article  CAS  PubMed  Google Scholar 

  16. Gui R, Jin H, Bu X, Fu Y, Wang Z, Liu Q (2019) Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord Chem Rev 383:82–103

    Article  CAS  Google Scholar 

  17. Ghasemi F, Hormozi-Nezhad MR, Mahmoudi M (2018) A new strategy to design colorful ratiometric probes and its application to fluorescent detection of Hg(II), Sensors and Actuators B. Chemical 259:894–899

    CAS  Google Scholar 

  18. Abbasi-Moayed S, Golmohammadi H, Bigdeli A, Hormozi-Nezhad MR (2018) A rainbow ratiometric fluorescent sensor array on bacterial nanocellulose for visual discrimination of biothiols. Analyst 143(14):3415–3424

    Article  CAS  PubMed  Google Scholar 

  19. FarahmandNejad MA, Hormozi-Nezhad MR (2017) Design of a ratiometric fluorescent probe for naked eye detection of dopamine. Anal Methods 9(23):3505–3512

    Article  CAS  Google Scholar 

  20. Ghasemi F, Hormozi-Nezhad MR (2019) Determination and identification of nitroaromatic explosives by a double-emitter sensor array. Talanta 201:230–236

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Zhang C, Chen X, Yang B, Yang L, Jiang C, Zhang Z (2016) Ratiometric fluorescent paper sensor utilizing hybrid carbon dots–quantum dots for the visual determination of copper ions. Nanoscale 8(11):5977–5984

    Article  CAS  PubMed  Google Scholar 

  22. Cho M-J, Park S-Y (2019) Carbon-dot-based ratiometric fluorescence glucose biosensor. Sens Actuators, B Chem 282:719–729

    Article  CAS  Google Scholar 

  23. Ma F, Sun M, Zhang K, Wang S (2015) A ratiometric fluorescence sensor for highly selective and sensitive detection of mercuric ion. Sens Actuators, B Chem 209:377–383

    Article  CAS  Google Scholar 

  24. Ghasemi F, Hormozi-Nezhad MR, Mahmoudi M (2018) A new strategy to design colorful ratiometric probes and its application to fluorescent detection of Hg(II). Sens Actuators, B Chem 259:894–899

    Article  CAS  Google Scholar 

  25. Shahdost-Fard F, Fahimi-Kashani N, Hormozi-Nezhad MR (2021) A ratiometric fluorescence nanoprobe using CdTe QDs for fast detection of carbaryl insecticide in apple. Talanta 221:121467

    Article  CAS  PubMed  Google Scholar 

  26. Chen B-B, Liu M-L, Gao Y-T, Chang S, Qian R-C, Li D-W (2023) Design and applications of carbon dots-based ratiometric fluorescent probes: a review. Nano Res 16(1):1064–1083

    Article  Google Scholar 

  27. Sena-Torralba A, Torné-Morató H, Parolo C, Ranjbar S, FarahmandNejad MA, Álvarez-Diduk R, Idili A, Hormozi-Nezhad MR, Merkoçi A (2022) A novel ratiometric fluorescent approach for the modulation of the dynamic range of lateral flow immunoassays. Adv Mater Technol 7(8):2101450

    Article  CAS  Google Scholar 

  28. Zhou Y, Huang X, Liu C, Zhang R, Gu X, Guan G, Jiang C, Zhang L, Du S, Liu B, Han M-Y, Zhang Z (2016) Color-multiplexing-based fluorescent test paper: dosage-sensitive visualization of arsenic(III) with discernable scale as low as 5 ppb. Anal Chem 88(12):6105–6109

    Article  CAS  PubMed  Google Scholar 

  29. Cai Y, You J, You Z, Dong F, Du S, Zhang L (2018) Profuse color-evolution-based fluorescent test paper sensor for rapid and visual monitoring of endogenous Cu2+ in human urine. Biosens Bioelectron 99:332–337

    Article  CAS  PubMed  Google Scholar 

  30. Liu C, Ning D, Zhang C, Liu Z, Zhang R, Zhao J, Zhao T, Liu B, Zhang Z (2017) Dual-colored carbon dot ratiometric fluorescent test paper based on a specific spectral energy transfer for semiquantitative assay of copper ions. ACS Appl Mater Interfaces 9(22):18897–18903

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Yu S, Liu W, Fu L, Wang Y, Li J, Chen L (2018) Molecular imprinting based hybrid ratiometric fluorescence sensor for the visual determination of bovine hemoglobin. ACS Sensors 3(2):378–385

    Article  CAS  PubMed  Google Scholar 

  32. Nejad MAF, Bigdeli A, Hormozi-Nezhad MR (2020) Wide color-varying visualization of sulfide with a dual emissive ratiometric fluorescence assay using carbon dots and gold nanoclusters. Microchem J 157:104960

    Article  CAS  Google Scholar 

  33. Chu S, Wang H, Ling X, Yu S, Yang L, Jiang C (2020) A portable smartphone platform using a ratiometric fluorescent paper strip for visual quantitative sensing. ACS Appl Mater Interfaces 12(11):12962–12971

    Article  CAS  PubMed  Google Scholar 

  34. Lu Z, Chen M, Li M, Liu T, Sun M, Wu C, Su G, Yin J, Wu M, Zou P, Lin L, Wang X, Huang Q, Yin H, Rao H, Zhou X, Ye J, Wang Y (2022) Smartphone-integrated multi-color ratiometric fluorescence portable optical device based on deep learning for visual monitoring of Cu2+ and thiram. Chem Eng J 439:135686

    Article  CAS  Google Scholar 

  35. Yaseen RH, Mahmood R, Darweesh M (2018) Color spaces representation and its role in the architectural design. IRCE 9(5):202. https://doi.org/10.15866/irece.v9i5.14992

  36. Burns SA (2017) Subtractive color mixture computation. arXiv preprint arXiv:1710.06364 

  37. Olagunju M, Adeniyi A, Adewumi S, Onyeabor U (2018) Algorithm development for mixture of two colors for enhancement of new color development. An Ser Inform 16(1):126–130

    Google Scholar 

  38. Naren G, Hsu C-W, Li S, Morimoto M, Tang S, Hernando J, Guirado G, Irie M, Raymo FM, Sundén H (2019) An all-photonic full color RGB system based on molecular photoswitches. Nat Commun 10(1):3996–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fahimi-Kashani N, Hormozi-Nezhad MR (2020) A smart-phone based ratiometric nanoprobe for label-free detection of methyl parathion. Sensors and Actuators B: Chemical 322

  40. Nejad MAF, Hormozi-Nezhad MR (2017) Design of a ratiometric fluorescent probe for naked eye detection of dopamine. Anal Methods 9(23):3505–3512

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Reza Hormozi-Nezhad or Hamid Abdollahi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This research did not involve human or animal samples.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1063 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarnejad, A., Abbasi-Moayed, S., Fahimi-Kashani, N. et al. Modeling and optimization of the ratio of fluorophores: a step towards enhancing the sensitivity of ratiometric probes. Microchim Acta 191, 327 (2024). https://doi.org/10.1007/s00604-024-06403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06403-3

Keywords

Navigation