Skip to main content
Log in

Immobilization of a broad host range phage on the peroxidase-like Fe-MOF for colorimetric determination of multiple Salmonella enterica strains in food

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A broad host range phage-based nanozyme (Fe-MOF@SalmpYZU47) was prepared for colorimetric detection of multiple Salmonella enterica strains. The isolation of a broad host range phage (SalmpYZU47) capable of infecting multiple S. enterica strains was achieved. Then, it was directly immobilized onto the Fe-MOF to prepare Fe-MOF@SalmpYZU47, exhibiting peroxidase-like activity. The peroxidase-like activity can be specifically inhibited by multiple S. enterica strains, benefiting from the broad host range capture ability of Fe-MOF@SalmpYZU47. Based on it, a colorimetric detection approach was developed for S. enterica in the range from 1.0 × 102 to 1.0 × 108 CFU mL−1, achieving a low limit of detection (LOD) of 11 CFU mL−1. The Fe-MOF@SalmpYZU47 was utilized for detecting S. enterica in authentic food samples, achieving recoveries ranging from 91.88 to 105.34%. Hence, our proposed broad host range phage-based nanozyme exhibits significant potential for application in the colorimetric detection of pathogenic bacteria.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bearson S (2022) Salmonella in swine: prevalence, multidrug resistance, and vaccination strategies. Annu Rev Animal Biosci 10:373–393. https://doi.org/10.1146/annurev-animal-013120-043304

    Article  Google Scholar 

  2. Guan L, Hu A, Ma S, Liu J, Yao X, Ye T, Han M, Yang C, Zhang R, Xiao X, Wu Y (2024) Lactiplantibacillus plantarum postbiotic protects against Salmonella infection in broilers via modulating NLRP3 inflammasome and gut microbiota. Poult Sci 103(4):103483–103483. https://doi.org/10.1016/j.psj.2024.103483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jennings E, Thurston T, Holden D (2017) Salmonella SPI-2 type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe 22(2):217–231. https://doi.org/10.1016/j.chom.2017.07.009

    Article  CAS  PubMed  Google Scholar 

  4. Collier S, Deng L, Adam E, Benedict K, Beshearse E, Blackstock A, Bruce B, Derado G, Edens C, Fullerton K, Gargano J, Geissler A, Hall A, Havelaar A, Hill V, Hoekstra R, Reddy S, Scallan E, Stokes E, Yoder J, Beach M (2021) Estimate of burden and direct healthcare cost of infectious waterborne disease in the United States. Emerg Infect Dis 27(1):140–149. https://doi.org/10.3201/eid2701.190676

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vinayaka A, Ngo T, Kant K, Engelsmann P, Dave V, Shahbazi M, Wolff A, Bang D (2019) Rapid detection of Salmonella enterica in food samples by a novel approach with combination of sample concentration and direct PCR. Biosens Bioelectron 129:224–230. https://doi.org/10.1016/j.bios.2018.09.078

    Article  CAS  PubMed  Google Scholar 

  6. Jiao C, Duan W, Wu X, Shang Y, Zhang F, Zhang M, Chen X, Zeng J, Yang C (2023) Multifunctional nanoprobe-amplified enzyme-linked immunosorbent assay on capillary: a universal platform for simple, rapid, and ultrasensitive dual-mode pathogen detection. Anal Chem 95(30):11316–11325. https://doi.org/10.1021/acs.analchem.3c01375

    Article  CAS  PubMed  Google Scholar 

  7. Castle L, Schuh D, Reynolds E, Furst A (2021) Electrochemical sensors to detect bacterial foodborne pathogens. Acs Sensors 6(5):1717–1730. https://doi.org/10.1021/acssensors.1c00481

    Article  CAS  PubMed  Google Scholar 

  8. Hussain W, Ullah M, Farooq U, Aziz A, Wang S (2021) Bacteriophage-based advanced bacterial detection: concept, mechanisms, and applications. Biosens Bioelectron 177:112973–112973. https://doi.org/10.1016/j.bios.2021.112973

    Article  CAS  PubMed  Google Scholar 

  9. Qin L, Xiao J, Yang H, Liang J, Li L, Wu S, Peng D (2024) Rapid immunoassays for the detection of quinoxalines and their metabolites residues in animal-derived foods: a review. Food Chem 443:138539–138539. https://doi.org/10.1016/j.foodchem.2024.138539

    Article  CAS  PubMed  Google Scholar 

  10. Ma S, Luo X, Kong J, Li X, Cao Z, Wang X, Cai W, Wang L, Ran G (2022) Plasmonic silver loaded hybrid Bi-Ag nanoalloys for highly efficient disinfection by enhancing photothermal performance and interface capability. Chem Eng J 450:138016. https://doi.org/10.1016/j.cej.2022.138016

    Article  CAS  Google Scholar 

  11. Zhao J, Han M, Ma A, Jiang F, Chen R, Dong Y, Wang X, Ruan S, Chen Y (2024) A machine vision-assisted Argonaute-mediated fluorescence biosensor for the detection of viable Salmonella in food without convoluted DNA extraction and amplification procedures. J Hazard Mater 466:133648–133648. https://doi.org/10.1016/j.jhazmat.2024.133648

    Article  CAS  PubMed  Google Scholar 

  12. Qi W, Zheng L, Hou Y, Duan H, Wang L, Wang S, Liu Y, Li Y, Liao M, Lin J (2022) A finger-actuated microfluidic biosensor for colorimetric detection of foodborne pathogens. Food Chem 381:131801–131801. https://doi.org/10.1016/j.foodchem.2021.131801

    Article  CAS  PubMed  Google Scholar 

  13. Lin X, Zhao M, Peng T, Zhang P, Shen R, Jia Y (2023) Detection and discrimination of pathogenic bacteria with nanomaterials-based optical biosensors: a review. Food Chem 426:136578–136578. https://doi.org/10.1016/j.foodchem.2023.136578

    Article  CAS  PubMed  Google Scholar 

  14. Zhang X, Lin S, Liu S, Tan X, Dai Y, Xia F (2021) Advances in organometallic/organic nanozymes and their applications. Coord Chem Rev 429:213652. https://doi.org/10.1016/j.ccr.2020.213652

    Article  CAS  Google Scholar 

  15. Feng M, Li X, Zhang X, Huang Y (2023) Recent advances in the development and analytical applications of oxidase-like nanozymes. Trac-Trends Anal Chem 166:117220. https://doi.org/10.1016/j.trac.2023.117220

    Article  CAS  Google Scholar 

  16. Niu K, Chen J, Lu X (2023) Versatile biomimetic catalyst functionalized nanozymes for electrochemical sensing. Chem Eng J 475:146491. https://doi.org/10.1016/j.cej.2023.146491

    Article  CAS  Google Scholar 

  17. Zhao Y, Wang X, Pan S, Hong F, Lu P, Hu X, Jiang F, Wu L, Chen Y (2024) Bimetallic nanozyme-bioenzyme hybrid material-mediated ultrasensitive and automatic immunoassay for the detection of aflatoxin B1 in food. Biosens Bioelectron 248:115992. https://doi.org/10.1016/j.bios.2023.115992

    Article  CAS  PubMed  Google Scholar 

  18. Zhu S, Tang Y, Shi B, Zou W, Wang X, Wang C, Wu Y (2021) Oligonucleotide-mediated the oxidase-mimicking activity of Mn3O4 nanoparticles as a novel colorimetric aptasensor for ultrasensitive and selective detection of Staphylococcus aureus in food. Sens Actuators B-Chem 349:130809. https://doi.org/10.1016/j.snb.2021.130809

    Article  CAS  Google Scholar 

  19. Costa S, Nogueira C, Cunha A, Lisac A, Carvalho C (2023) Potential of bacteriophage proteins as recognition molecules for pathogen detection. Crit Rev Biotechnol 43(5):787–804. https://doi.org/10.1080/07388551.2022.2071671

    Article  CAS  PubMed  Google Scholar 

  20. Xu X, Xu Q, Li W, Xiao F, Xu H (2024) From engineered photoactive materials to detection signal amplification strategies in photoelectrochemical biosensing of pathogens: new horizons and perspectives. Chem Eng J 480:147941. https://doi.org/10.1016/j.cej.2023.147941

    Article  CAS  Google Scholar 

  21. Hatfull G, Dedrick R, Schooley R (2022) Phage therapy for antibiotic-resistant bacterial infections. Annu Rev Med 73:197–211. https://doi.org/10.1146/annurev-med-080219-122208

    Article  CAS  PubMed  Google Scholar 

  22. Strathdee S, Hatfull G, Mutalik V, Schooley R (2023) Phage therapy: from biological mechanisms to future directions. Cell 186(1):17–31. https://doi.org/10.1016/j.cell.2022.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uyttebroek S, Chen B, Onsea J, Ruythooren F, Debaveye Y, Devolder D, Spriet I, Depypere M, Wagemans J, Lavigne R, Pirnay J, Merabishvili M, Munter P, Peetermans W, Dupont L, Gerven L, Metsemakers W (2022) Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect Dis 22(8):E208–E220. https://doi.org/10.1016/s1473-3099(21)00612-5

    Article  CAS  PubMed  Google Scholar 

  24. Huang C, Zhao J, Lu R, Wang J, Nugen S, Chen Y, Wang X (2023) A phage-based magnetic relaxation switching biosensor using bioorthogonal reaction signal amplification for Salmonella detection in foods. Food Chem 400:134035–134035. https://doi.org/10.1016/j.foodchem.2022.134035

    Article  CAS  PubMed  Google Scholar 

  25. Ye J, Guo J, Li T, Tian J, Yu M, Wang X, Majeed U, Song W, Xiao J, Luo Y, Yue T (2022) Phage-based technologies for highly sensitive luminescent detection of foodborne pathogens and microbial toxins: a review. Compr Rev Food Sci Food Safety 21(2):1843–1867. https://doi.org/10.1111/1541-4337.12908

    Article  CAS  Google Scholar 

  26. Zhou Y, Marar A, Kner P, Ramasamy R (2017) Charge-directed immobilization of bacteriophage on nanostructured electrode for whole-cell electrochemical biosensors. Anal Chem 89(11):5735–5742. https://doi.org/10.1021/acs.analchem.6b03751

    Article  CAS  Google Scholar 

  27. Gao L, Ouyang M, Li Y, Zhang H, Zheng X, Li H, Rao S, Yang Z, Gao S (2022) Isolation and characterization of a lytic vibriophage OY1 and its biocontrol effects against Vibrio spp. Front Microbiol 13:830692–830692. https://doi.org/10.3389/fmicb.2022.830692

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rai S, Tyagi A, Kumar B, Reddy S (2023) Isolation and characterization of Aeromonas hydrophila lytic phage, and evaluation of a phage cocktail against A. hydrophila contamination in fish fillet. Food Control 145:109460. https://doi.org/10.1016/j.foodcont.2022.109460

    Article  CAS  Google Scholar 

  29. Denyes J, Dunne M, Steiner S, Mittelviefhaus M, Weiss A, Schmidt H, Klumpp J, Loessner M (2017) Modified bacteriophage S16 long tail fiber proteins for rapid and specific immobilization and detection of Salmonella cells. Appl Environ Microbiol 83(12):E00277-E317. https://doi.org/10.1128/aem.00277-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang X, Yun Y, Sun W, Lu Z, Tao X (2022) A high-performance fluorescence immunoassay based on pyrophosphate-induced MOFs NH2-MIL-88B(Fe) hydrolysis for chloramphenicol detection. Sens Actuators B-Chem 353:131143. https://doi.org/10.1016/j.snb.2021.131143

    Article  CAS  Google Scholar 

  31. Darabdhara G, Sharma B, Das M, Boukherroub R, Szunerits S (2017) Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection. Sens Actuators B-Chem 238:842–851. https://doi.org/10.1016/j.snb.2016.07.106

    Article  CAS  Google Scholar 

  32. Wei J, Chen X, Shi S, Mo S, Zheng N (2015) An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures. Nanoscale 7(45):19018–19026. https://doi.org/10.1039/c5nr05675f

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Xu X, Yang J, Tan M, Zhou W, Ga L, Yang Z (2023) Directional immobilization of phage on the palladium-based nanozyme for colorimetric detection of Cronobacter sakazakii in powdered infant formula. LWT-Food Sci Technol 186:115260. https://doi.org/10.1016/j.lwt.2023.115260

    Article  CAS  Google Scholar 

  34. Zhou W, Wen H, Hao G, Zhang Y, Yang J, Gao L, Zhu G, Yang Z, Xu X (2023) Surface engineering of magnetic peroxidase mimic using bacteriophage for high-sensitivity/specificity colorimetric determination of Staphylococcus aureus in food. Food Chem 426:136611–136611. https://doi.org/10.1016/j.foodchem.2023.136611

    Article  CAS  PubMed  Google Scholar 

  35. Arnaud C, Effantin G, Vives C, Engilberge S, Bacia M, Boulanger P, Girard E, Schoehn G, Breyton C (2017) Bacteriophage T5 tail tube structure suggests a trigger mechanism for Siphoviridae DNA ejection. Nat Commun 8:1953. https://doi.org/10.1038/s41467-017-02049-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ren Y, Wei J, Wang Y, Wang P, Ji Y, Liu B, Wang J, González-Sapienza G, Wang Y (2022) Development of a streptavidin-bridged enhanced sandwich ELISA based on self-paired nanobodies for monitoring multiplex Salmonella serogroups. Anal Chim Acta 1203:339705–339705. https://doi.org/10.1016/j.aca.2022.339705

    Article  CAS  PubMed  Google Scholar 

  37. Feng K, Li T, Ye C, Gao X, Yang T, Liang X, Yue X, Ding S, Dong Q, Yang M, Xiong C, Huang G, Zhang J (2021) A label-free electrochemical immunosensor for rapid detection of Salmonella in milk by using CoFe-MOFs-graphene modified electrode. Food Control 130:108357. https://doi.org/10.1016/j.foodcont.2021.108357

    Article  CAS  Google Scholar 

  38. Zhou C, Zou H, Li M, Sun C, Ren D, Li Y (2018) Fiber optic surface plasmon resonance sensor for detection of E. coli O157:H7 based on antimicrobial peptides and AgNPs-rGO. Biosens Bioelectron 117:347–353. https://doi.org/10.1016/j.bios.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  39. Yang M, Chen X, Zhu L, Lin S, Li C, Li X, Huang K, Xu W (2021) Aptamer-functionalized DNA-silver nanocluster nanofilm for visual detection and elimination of bacteria. ACS Appl Mater Interfaces 13(32):38647–38655. https://doi.org/10.1021/acsami.1c05751

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is supported by the Natural Science Foundation of the Open Research Fund of Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs (ZJK202314), the Natural Science Foundation of Jiangsu Province (BK20230586), the Natural Science Foundation of Yangzhou City (SZR2023000023), and the Higher Education Institutions of Jiangsu Province (23KJB550011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Lin or Xuechao Xu.

Ethics declarations

Ethics approval

This research did not involve human or animal samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5562 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Zhang, L., Yang, J. et al. Immobilization of a broad host range phage on the peroxidase-like Fe-MOF for colorimetric determination of multiple Salmonella enterica strains in food. Microchim Acta 191, 331 (2024). https://doi.org/10.1007/s00604-024-06402-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06402-4

Keywords

Navigation