Skip to main content
Log in

Biogated mesoporous silica nanoagents for inhibition of cell migration and combined cancer therapy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Migration is an initial step in tumor expansion and metastasis; suppressing cellular migration is beneficial to cancer therapy. Herein, we designed a novel biogated nanoagents that integrated the migration inhibitory factor into the mesoporous silica nanoparticle (MSN) drug delivery nanosystem to realize cell migratory inhibition and synergistic treatment. Antisense oligonucleotides (Anti) of microRNA-330-3p, which is positively related with cancer cell proliferation, migration, invasion, and angiogenesis, not only acted as the locker for blocking drugs but also acted as the inhibitory factor for suppressing migration via gene therapy. Synergistic with gene therapy, the biogated nanoagents (termed as MSNs-Gef-Anti) could achieve on-demand drug release based on the intracellular stimulus-recognition and effectively kill tumor cells. Experimental results synchronously demonstrated that the migration suppression ability of MSNs-Gef-Anti nanoagents (nearly 30%) significantly contributed to cancer therapy, and the lethality rate of the non-small-cell lung cancer was up to 70%. This strategy opens avenues for realizing efficacious cancer therapy and should provide an innovative way for pursuing the rational design of advanced nano-therapeutic platforms with the combination of cancer cell migratory inhibition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Levin E (2005) Cancer therapy through control of cell migration. Curr Cancer Drug Tar 505–518. https://doi.org/10.2174/156800905774574048.

  2. Yamaguchi H, Wyckoff J, Condeelis J (2005) Cell migration in tumors. Curr Opin Cell Biol 17:559–564. https://doi.org/10.1016/j.ceb.2005.08.002

    Article  CAS  PubMed  Google Scholar 

  3. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369. https://doi.org/10.1016/S0092-8674(00)81280-5

    Article  CAS  PubMed  Google Scholar 

  4. Obenauf AC, Massagué J (2015) Surviving at a distance: organ-specific metastasis. Trends Cancer 1:76–91. https://doi.org/10.1016/j.trecan.2015.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bergers G, Fendt S-M (2021) The metabolism of cancer cells during metastasis. Nat Rev Cancer 21:162–180. https://doi.org/10.1038/s41568-020-00320-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Charan M, Das S, Mishra S, Chatterjee N, Varikuti S, Kaul K, Misri S, Ahirwar DK, Satoskar AR, Ganju RK (2020) Macrophage migration inhibitory factor inhibition as a novel therapeutic approach against triple-negative breast cancer. Cell Death Dis 11:774. https://doi.org/10.1038/s41419-020-02992-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Balogh KN, Templeton DJ, Cross JV (2018) Macrophage migration inhibitory factor protects cancer cells from immunogenic cell death and impairs anti-tumor immune responses. PLoS One 13:e0197702. https://doi.org/10.1371/journal.pone.0197702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu T, Lai L, Song Z, Chen T (2016) A sequentially triggered nanosystem for precise drug delivery and simultaneous inhibition of cancer growth, migration, and invasion. Adv Funct Mater 26:7775–7790. https://doi.org/10.1002/adfm.201604206

    Article  CAS  Google Scholar 

  9. Lu W, Lei C, Chen K, Wang Z, Liu F, Li X, Shen J, Shen Q, Gao J, Lin W, Hu Q (2023) A Cu-based metal–organic framework Cu-Cip with cuproptosis for cancer therapy and inhibition of cancer cell migration. Inorg Chem acs.inorgchem.3c03393. https://doi.org/10.1021/acs.inorgchem.3c03393

  10. Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G (2019) Trends in the development of miRNA bioinformatics tools. Brief Bioinform 20:1836–1852. https://doi.org/10.1093/bib/bby054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688. https://doi.org/10.1038/nature06174

    Article  CAS  PubMed  Google Scholar 

  12. Yang B, Feng X, Liu H, Tong R, Wu J, Li C, Yu H, Chen Y, Cheng Q, Chen J, Cai X, Wu W, Lu Y, Hu J, Liang K, Lv Z, Wu J, Zheng S (2020) High-metastatic cancer cells derived exosomal miR92a-3p promotes epithelial-mesenchymal transition and metastasis of low-metastatic cancer cells by regulating PTEN/Akt pathway in hepatocellular carcinoma. Oncogene 39:6529–6543. https://doi.org/10.1038/s41388-020-01450-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu Y, Min Z, Zhou ZM, Linhong R, Tao L, Yan HS (2019) Hypoxia-induced exosomes promote hepatocellular carcinoma proliferation and metastasis via miR-1273f transfer. Exp Cell Res 385:111649. https://doi.org/10.1016/j.yexcr.2019.111649

    Article  CAS  PubMed  Google Scholar 

  14. Jafarzadeh A, Paknahad MH, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Rajabi A, Shojaie L, Mirzaei H (2022) Dysregulated expression and functions of microRNA-330 in cancers: a potential therapeutic target. Biomed Pharmacother 146:112600. https://doi.org/10.1016/j.biopha.2021.112600

    Article  CAS  PubMed  Google Scholar 

  15. Wei C, Zhang R, Cai Q, Gao X, Tong F, Dong J, Hu Y, Wu G, Dong X (2019) MicroRNA-330–3p promotes brain metastasis and epithelial-mesenchymal transition via GRIA3 in non-small cell lung cancer. Aging-US 11:6734–6761. https://doi.org/10.18632/aging.102201

    Article  CAS  Google Scholar 

  16. Hai X, Ji M, Yu K, Tian T, Cui Z, Bi S, Zhang X (2023) Acid-responsive DNA-Au nanomachine with active/passive dual-targeting capacity for combinational cancer therapy. Mater Today Nano 23:100355. https://doi.org/10.1016/j.mtnano.2023.100355

    Article  CAS  Google Scholar 

  17. Wang S, Bu Y, Lu X, Chen D, Yu Z, Zhang J, Wang L, Zhou H (2022) Molecular engineering to construct specific cancer cell lysosome targeting photosensitizer by adjusting the proton binding ability. Sens Actuators B Chem 371:132546. https://doi.org/10.1016/j.snb.2022.132546

    Article  CAS  Google Scholar 

  18. Nebu J, Anjali Devi JS, Aparna RS, Abha K, Sony G (2018) Erlotinib conjugated gold nanocluster enveloped magnetic iron oxide nanoparticles–a targeted probe for imaging pancreatic cancer cells. Sens Actuators B Chem 257:1035–1043. https://doi.org/10.1016/j.snb.2017.11.017

    Article  CAS  Google Scholar 

  19. Zhi S, Zhang X, Zhang J, Wang X, Bi S (2023) Functional nucleic acids-engineered biobarcode nanoplatforms for targeted synergistic therapy of multidrug-resistant cancer. ACS Nano 17:13533–13544. https://doi.org/10.1021/acsnano.3c02009

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, Wan W, Bai Z, Peng B, Wang X, Cui L, Liu Z, Lin K, Yang J, Hao J, Tian F (2023) Construction of pH-responsive nanoplatform from stable magnetic nanoparticles for targeted drug delivery and intracellular imaging. Sens Actuators B Chem 375:132869. https://doi.org/10.1016/j.snb.2022.132869

    Article  CAS  Google Scholar 

  21. Shi P, Sun X, Yuan H, Chen K, Bi S, Zhang S (2023) Nanoscale metal−organic frameworks combined with metal nanoparticles and metal oxide/peroxide to relieve tumor hypoxia for enhanced photodynamic therapy. ACS Biomater Sci Eng 9:5441–5456. https://doi.org/10.1021/acsbiomaterials.3c00509

    Article  CAS  PubMed  Google Scholar 

  22. Xu J, Chen M, Li M, Xu S, Liu H (2023) Integration of chemotherapy and phototherapy based on a pH/ROS/NIR multi-responsive polymer-modified MSN drug delivery system for improved antitumor cells efficacy. Colloids Surf A: Physicochem Eng Aspects 663:131015. https://doi.org/10.1016/j.colsurfa.2023.131015

    Article  CAS  Google Scholar 

  23. Peng S, Zhang F, Huang B, Wang J, Zhang L (2021) Mesoporous silica nanoprodrug encapsulated with near-infrared absorption dye for photothermal therapy combined with chemotherapy. ACS Appl Bio Mater 4:8225–8235. https://doi.org/10.1021/acsabm.1c00751

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Zhu Y, Fan L, Ling J, Yang L-Y, Wang N, Ouyang X (2022) Delivery of curcumin by fucoidan-coated mesoporous silica nanoparticles: fabrication, characterization, and in vitro release performance. Int J Biol Macromol 211:368–379. https://doi.org/10.1016/j.ijbiomac.2022.05.086

    Article  CAS  PubMed  Google Scholar 

  25. Cui Y, Deng R, Li X, Wang X, Jia Q, Bertrand E, Meguellati K, Yang Y-W (2019) Temperature-sensitive polypeptide brushes-coated mesoporous silica nanoparticles for dual-responsive drug release. Chinese Chem Lett 30:2291–2294. https://doi.org/10.1016/j.cclet.2019.08.017

    Article  CAS  Google Scholar 

  26. Vaghasiya K, Ray E, Sharma A, Katare OP, Verma RK (2020) Matrix metalloproteinase-responsive mesoporous silica nanoparticles cloaked with cleavable protein for “Self-Actuating” on-demand controlled drug delivery for cancer therapy. ACS Appl Bio Mater 3:4987–4999. https://doi.org/10.1021/acsabm.0c00497

    Article  CAS  PubMed  Google Scholar 

  27. Liu J, Liu W, Zhang K, Shi J, Zhang Z (2020) A magnetic drug delivery system with “OFF–ON” state via specific molecular recognition and conformational changes for precise tumor therapy. Adv Healthc Mater 9:1901316. https://doi.org/10.1002/adhm.201901316

    Article  CAS  Google Scholar 

  28. Lu LL, Zhang Q, Gu Y, Li XL, Jing XJ (2022) Core-shell “loading-type” nanomaterials towards: simultaneous imaging analysis of glutathione and microRNA. Anal Chim Acta 1196:339551. https://doi.org/10.1016/j.aca.2022.339551

    Article  CAS  PubMed  Google Scholar 

  29. Esmaeili E, Eslami-Arshaghi T, Hosseinzadeh S, Elahirad E, Jamalpoor Z, Hatamie S, Soleimani M (2020) The biomedical potential of cellulose acetate/polyurethane nanofibrous mats containing reduced graphene oxide/silver nanocomposites and curcumin: antimicrobial performance and cutaneous wound healing. Int J Biol Macromol 152:418–427. https://doi.org/10.1016/j.ijbiomac.2020.02.295

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2018YFA0901300), the National Natural Science Foundation of China (Grant No. 22078149), the Natural Science Foundation of Jiangsu Province (No. BK20220002), and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (CX10291).

Author information

Authors and Affiliations

Authors

Contributions

Yu Wu: conceptualization, methodology, formal analysis, investigation, writing—original draft, and visualization. Xiao-Jie Shi: investigation and writing—review and editing. Xin-Yi Dai and Tian Shun Song: validation and writing—review and editing. Xiang-Ling Li: conceptualization, investigation, and writing—review and editing. Jing Jing Xie: conceptualization, project administration, funding acquisition and supervision.

Corresponding authors

Correspondence to Xiang-Ling Li or Jing Jing Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 793 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Shi, XJ., Dai, XY. et al. Biogated mesoporous silica nanoagents for inhibition of cell migration and combined cancer therapy. Microchim Acta 191, 326 (2024). https://doi.org/10.1007/s00604-024-06401-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06401-5

Keywords

Navigation