Skip to main content
Log in

Accelerated diagnosis: a crosslinking catalytic hairpin assembly system for rapid and sensitive SARS-CoV-2 RNA detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The COVID-19 pandemic has underscored the urgent need for rapid and reliable strategies for early detection of SARS-CoV-2. In this study, we propose a DNA nanosphere-based crosslinking catalytic hairpin assembly (CCHA) system for the rapid and sensitive SARS-CoV-2 RNA detection. The CCHA system employs two DNA nanospheres functionalized with catalytic hairpin assembly (CHA) hairpins. The presence of target SARS-CoV-2 RNA initiated the crosslinking of DNA nanospheres via CHA process, leading to the amplification of fluorescence signals. As a result, the speed of SARS-CoV-2 diagnosis was enhanced by significantly increasing the local concentration of the reagents in a crosslinked DNA product, leading to a detection limit of 363 fM within 5 min. The robustness of this system has been validated in complex environments, such as fetal bovine serum and saliva. Hence, the proposed CCHA system offers an efficient and simple approach for rapid detection of SARS-CoV-2 RNA, holding substantial promise for enhancing COVID-19 diagnosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W (2019) China Novel Coronavirus I, Research T (2020) A novel coronavirus from patients with pneumonia in China. N Engl J Med 382(8):727–733. https://doi.org/10.1056/NEJMoa2001017

    Article  Google Scholar 

  2. Buitrago-Garcia D, Egli-Gany D, Counotte MJ, Hossmann S, Imeri H, Ipekci AM, Salanti G, Low N (2020) Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: a living systematic review and meta-analysis. PLoS Med 17(9):e1003346. https://doi.org/10.1371/journal.pmed.1003346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jain U (2020) Effect of COVID-19 on the organs. Cureus 12(8):e9540. https://doi.org/10.7759/cureus.9540

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cha H, Kim H, Joung Y, Kang H, Moon J, Jang H, Park S, Kwon HJ, Lee IC, Kim S, Yong D, Yoon SW, Park SG, Guk K, Lim EK, Park HG, Choo J, Jung J, Kang T (2022) Surface-enhanced Raman scattering-based immunoassay for severe acute respiratory syndrome coronavirus 2. Biosens Bioelectron 202:114008. https://doi.org/10.1016/j.bios.2022.114008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hossain F, Shen Q, Balasuriya N, Law JLM, Logan M, Houghton M, Tyrrell DL, Joyce MA, Serpe MJ (2023) Utilization of a glucometer test strip and enzymatic reactions to quantify anti-SARS-CoV-2 spike RBD IgG antibody and SARS-CoV-2 virus in saliva and serum. Anal Chem 95(19):7620–7629. https://doi.org/10.1021/acs.analchem.3c00481

    Article  CAS  PubMed  Google Scholar 

  6. Mei Y, Lin X, He C, Zeng W, Luo Y, Liu C, Liu Z, Yang M, Kuang Y, Huang Q (2022) Recent progresses in electrochemical DNA biosensors for SARS-CoV-2 detection. Front Bioeng Biotechnol 10:952510. https://doi.org/10.3389/fbioe.2022.952510

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ventura BD, Cennamo M, Minopoli A, Campanile R, Censi SB, Terracciano D, Portella G, Velotta R (2020) Colorimetric test for fast detection of SARS-CoV-2 in nasal and throat swabs. ACS Sens 5(10):3043–3048. https://doi.org/10.1021/acssensors.0c01742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li J, Hu X, Wang X, Yang J, Zhang L, Deng Q, Zhang X, Wang Z, Hou T, Li S (2021) A novel one-pot rapid diagnostic technology for COVID-19. Anal Chim Acta 1154:338310. https://doi.org/10.1016/j.aca.2021.338310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gowri A, Ashwin Kumar N, Suresh Anand BS (2021) Recent advances in nanomaterials based biosensors for point of care (PoC) diagnosis of COVID-19 - a minireview. Trends Analyt Chem 137:116205. https://doi.org/10.1016/j.trac.2021.116205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fan Z, Yao B, Ding Y, Zhao J, Xie M, Zhang K (2021) Entropy-driven amplified electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA tetrahedron scaffolds. Biosens Bioelectron 178:113015. https://doi.org/10.1016/j.bios.2021.113015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takahashi S, Sugimoto N (2021) Watson-Crick versus Hoogsteen base pairs: chemical strategy to encode and express genetic information in life. Acc Chem Res 54(9):2110–2120. https://doi.org/10.1021/acs.accounts.0c00734

    Article  CAS  PubMed  Google Scholar 

  12. Corman V M, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu D K, Bleicker T, Brunink S, Schneider J, Schmidt M L, Mulders D G, Haagmans B L, van der Veer B, van den Brink S, Wijsman L, Goderski G, Romette J L, Ellis J, Zambon M, Peiris M, Goossens H, Reusken C, Koopmans M P, Drosten C (2020) Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 25(3). https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045

  13. Engelmann I, Alidjinou EK, Ogiez J, Pagneux Q, Miloudi S, Benhalima I, Ouafi M, Sane F, Hober D, Roussel A, Cambillau C, Devos D, Boukherroub R, Szunerits S (2021) Preanalytical issues and cycle threshold values in SARS-CoV-2 real-time RT-PCR testing: should test results include these? ACS Omega 6(10):6528–6536. https://doi.org/10.1021/acsomega.1c00166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang S, Rothman RE (2004) PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 4(6):337–348. https://doi.org/10.1016/S1473-3099(04)01044-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feng C, Mao X, Shi H, Bo B, Chen X, Chen T, Zhu X, Li G (2017) Detection of microRNA: a point-of-care testing method based on a pH-responsive and highly efficient isothermal amplification. Anal Chem 89(12):6631–6636. https://doi.org/10.1021/acs.analchem.7b00850

    Article  CAS  PubMed  Google Scholar 

  16. Ji T, Liu Z, Wang G, Guo X, Akbar Khan S, Lai C, Chen H, Huang S, Xia S, Chen B, Jia H, Chen Y, Zhou Q (2020) Detection of COVID-19: a review of the current literature and future perspectives. Biosens Bioelectron 166:112455. https://doi.org/10.1016/j.bios.2020.112455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim S, Park JE, Hwang W, Seo J, Lee YK, Hwang JH, Nam JM (2017) Optokinetically encoded nanoprobe-based multiplexing strategy for microRNA profiling. J Am Chem Soc 139(9):3558–3566. https://doi.org/10.1021/jacs.7b01311

    Article  CAS  PubMed  Google Scholar 

  18. Yang Y, Yi W, Gong F, Tan Z, Yang Y, Shan X, Xie C, Ji X, Zheng Z, He Z (2023) CRISPR/Cas13a trans-cleavage-triggered catalytic hairpin assembly assay for specific and ultrasensitive SARS-CoV-2 RNA detection. Anal Chem 95(2):1343–1349. https://doi.org/10.1021/acs.analchem.2c04306

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, Ge Q, Zhao X (2023) Enzyme-free isothermal amplification strategy for the detection of tumor-associated biomarkers: a review. TrAC Trends in Analytical Chemistry 160. https://doi.org/10.1016/j.trac.2023.116960

  20. Gong T, Liao L, Jiang B, Yuan R, Xiang Y (2024) Ag(+)-stabilized DNA triplex coupled with catalytic hairpin assembly and CRISPR/Cas12a amplifications for sensitive metallothionein assay. Talanta 268(Pt 2):125392. https://doi.org/10.1016/j.talanta.2023.125392

    Article  CAS  PubMed  Google Scholar 

  21. Zhao SJ, Zheng P, Wu Z, Jiang JH (2022) DNA-templated bioorthogonal reactions via catalytic hairpin assembly for precise RNA imaging in live cells. Anal Chem 94(6):2693–2698. https://doi.org/10.1021/acs.analchem.1c05509

    Article  CAS  PubMed  Google Scholar 

  22. Do JY, Jeong JY, Hong CA (2021) Catalytic hairpin DNA assembly-based chemiluminescent assay for the detection of short SARS-CoV-2 target cDNA. Talanta 233:122505. https://doi.org/10.1016/j.talanta.2021.122505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen G, Yang N, Xu L, Lu S, Chen Z, Wu F, Chen J, Zhang X (2023) Base-stacking-driven catalytic hairpin assembly: a nucleic acid amplification reaction using electrode interface as a “Booster” for SARS-CoV-2 point-of-care testing. Anal Chem 95(42):15595–15605. https://doi.org/10.1021/acs.analchem.3c02577

    Article  CAS  PubMed  Google Scholar 

  24. Zhang K, Fan Z, Ding Y, Xie M (2022) A pH-engineering regenerative DNA tetrahedron ECL biosensor for the assay of SARS-CoV-2 RdRp gene based on CRISPR/Cas12a trans-activity. Chem Eng J 429:132472. https://doi.org/10.1016/j.cej.2021.132472

    Article  CAS  PubMed  Google Scholar 

  25. Yu X, Ding S, Zhao Y, Xu M, Wu Z, Zhao C (2024) A highly sensitive and robust electrochemical biosensor for microRNA detection based on PNA-DNA hetero-three-way junction formation and target-recycling catalytic hairpin assembly amplification. Talanta 266:125020. https://doi.org/10.1016/j.talanta.2023.125020

    Article  CAS  PubMed  Google Scholar 

  26. Karunanayake Mudiyanselage A, Yu Q, Leon-Duque MA, Zhao B, Wu R, You M (2018) Genetically encoded catalytic hairpin assembly for sensitive RNA imaging in live cells. J Am Chem Soc 140(28):8739–8745. https://doi.org/10.1021/jacs.8b03956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314(5805):1585–1588. https://doi.org/10.1126/science.1132493

    Article  CAS  PubMed  Google Scholar 

  28. Zhang DY, Turberfield AJ, Yurke B, Winfree E (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853):1121–1125. https://doi.org/10.1126/science.1148532

    Article  CAS  PubMed  Google Scholar 

  29. Wang YX, Wang DX, Ma JY, Wang J, Du YC, Kong DM (2021) DNA nanolantern-based split aptamer probes for in situ ATP imaging in living cells and lighting up mitochondria. Analyst 146(8):2600–2608. https://doi.org/10.1039/d1an00275a

    Article  CAS  PubMed  Google Scholar 

  30. Huang DJ, Cao T, Huang ZM, Wu Z, Tang LJ, Jiang JH (2019) Crosslinking catalytic hairpin assembly for high-contrast imaging of multiple mRNAs in living cells. Chem Commun 55(27):3899–3902. https://doi.org/10.1039/c9cc01033e

    Article  CAS  Google Scholar 

  31. Miao P (2023) Magnetic multipedal DNA walking nanomachine driven by catalytic hairpin assembly. Anal Chem 95(17):6760–6764. https://doi.org/10.1021/acs.analchem.3c00427

    Article  CAS  PubMed  Google Scholar 

  32. He M, He M, Zhang J, Liu C, Pan Q, Yi J, Chen T (2020) A spatial-confinement hairpin cascade reaction-based DNA tetrahedral amplifier for mRNA imaging in live cells. Talanta 207:120287. https://doi.org/10.1016/j.talanta.2019.120287

    Article  CAS  PubMed  Google Scholar 

  33. Liu L, Rong Q, Ke G, Zhang M, Li J, Li Y, Liu Y, Chen M, Zhang XB (2019) Efficient and reliable microRNA imaging in living cells via a FRET-based localized hairpin-DNA cascade amplifier. Anal Chem 91(5):3675–3680. https://doi.org/10.1021/acs.analchem.8b05778

    Article  CAS  PubMed  Google Scholar 

  34. Zhou XM, Zhuo Y, Yuan R, Chai YQ (2023) Target-mediated self-assembly of DNA networks for sensitive detection and intracellular imaging of APE1 in living cells. Chem Sci 14(9):2318–2324. https://doi.org/10.1039/d2sc06968g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21877048, 22077048, and 22277014), Guangxi Natural Science Foundation (Nos. 2022GXNSFBA035533, AD21220061, 2021GXNSFDA075003, and 2022GXNSFBA035482), and the startup fund of Guangxi University (A3040051003 and A3040051011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiying Lin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All experiments were performed in compliance with the relevant laws and guidelines of Guangxi University, and the experiments have been approved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2836 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, L., Yuan, R., Hong, Y. et al. Accelerated diagnosis: a crosslinking catalytic hairpin assembly system for rapid and sensitive SARS-CoV-2 RNA detection. Microchim Acta 191, 333 (2024). https://doi.org/10.1007/s00604-024-06396-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06396-z

Keywords

Navigation