Skip to main content
Log in

Efficient porphyrin integrated UiO-66 probes for ratiometric fluorescence sensing of antibiotic residues in milk

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Dual-emissive fluorescence probes were designed by integrating porphyrin into the frameworks of UiO-66 for ratiometric fluorescence sensing of amoxicillin (AMX). Porphyrin integrated UiO-66 showed dual emission in the blue and red region. AMX resulted in the quenching of blue fluorescence component, attributable to the charge neutralization and hydrogen bonds induced energy transfer. AMX was detected using (F438/F654) as output signals. Two linear relationships were observed (from 10 to 1000 nM and 1 to 100 µM), with a limit of detection of 27 nM. The porphyrin integrated UiO-66 probe was used to detect AMX in practical samples. This work widens the road for the development of dual/multiple emissive fluorescence sensors for analytical applications, providing materials and theoretical supporting for food, environmental, and human safety.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yazidi A, Atrous M, Edi Soetaredjo F, Sellaoui L, Ismadji S, Erto A, Bonilla-Petriciolet A, Luiz Dotto G, Ben Lamine A (2020) Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: experimental study and modeling analysis. Chem Eng J 379:122320

    Article  CAS  Google Scholar 

  2. Andreozzi R, Caprio V, Ciniglia C, de Champdoré M, Lo Giudice R, Marotta R, Zuccato E (2004) Antibiotics in the environment: occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environ Sci Technol 38(24):6832–6838

    Article  CAS  PubMed  Google Scholar 

  3. Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU Jr, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119(6):3510–3673

    Article  CAS  PubMed  Google Scholar 

  4. Aryee AA, Han R, Qu L (2022) Occurrence, detection and removal of amoxicillin in wastewater: a review. J Cleaner Prod 368:133140

    Article  CAS  Google Scholar 

  5. Yang C-W, Liu C, Chang B-V (2020) Biodegradation of amoxicillin, tetracyclines and sulfonamides in wastewater sludge. Water 12(8):2147

    Article  CAS  Google Scholar 

  6. ul Ain N, Anis I, Ahmed F, Shah MR, Parveen S, Faizi S, Ahmed S (2018) Colorimetric detection of amoxicillin based on querecetagetin coated silver nanoparticles. Sens Actuators B 265:617–624

    Article  CAS  Google Scholar 

  7. Nag P, Sadani K, Mohapatra S, Mukherji S, Mukherji S (2021) Evanescent wave optical fiber sensors using enzymatic hydrolysis on nanostructured polyaniline for detection of β-lactam antibiotics in food and environment. Anal Chem 93(4):2299–2308

    Article  CAS  PubMed  Google Scholar 

  8. De Baere S, Cherlet M, Baert K, De Backer P (2002) Quantitative analysis of amoxycillin and its major metabolites in animal tissues by liquid chromatography combined with electrospray ionization tandem mass spectrometry. Anal Chem 74(6):1393–1401

    Article  Google Scholar 

  9. Hermo MP, Saurina J, Barbosa J, Barrón D (2014) High-resolution mass spectrometry applied to the study of metabolome modifications in various chicken tissues after amoxicillin administration. Food Chem 153:405–413

    Article  CAS  PubMed  Google Scholar 

  10. Santos L, Ramos F (2016) Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: a review. Trends Food Sci Technol 52:16–30

    Article  CAS  Google Scholar 

  11. Ayankojo AG, Reut J, Öpik A, Furchner A, Syritski V (2018) Hybrid molecularly imprinted polymer for amoxicillin detection. Biosens Bioelectron 118:102–107

    Article  CAS  PubMed  Google Scholar 

  12. Sanli S (2024) Single-drop electrochemical immunosensor with 3D-printed magnetic attachment for onsite smartphone detection of amoxicillin in raw milk. Food Chem 437:137823

    Article  CAS  PubMed  Google Scholar 

  13. Prakashan D, Kolhe P, Gandhi S (2024) Design and fabrication of a competitive lateral flow assay using gold nanoparticle as capture probe for the rapid and on-site detection of penicillin antibiotic in food samples. Food Chem 439:138120

    Article  CAS  PubMed  Google Scholar 

  14. Attia KAM, Nassar MWI, El-Zeiny MB, Serag A (2016) Different spectrophotometric methods applied for the analysis of binary mixture of flucloxacillin and amoxicillin: a comparative study. Spectrochim Acta Part A 161:64–69

    Article  CAS  Google Scholar 

  15. Saini A, Singh J, Kaur R, Singh N, Kaur N (2015) Fluoremetric determination of amoxicillin drug in aqueous medium using hybrid framework of organic–inorganic nanoparticles. Sens Actuators B 209:524–529

    Article  CAS  Google Scholar 

  16. Pawar SP, Walekar LS, Gunjal DB, Dalavi DK, Gore AH, Anbhule PV, Patil SR, Kolekar GB (2017) Fluorescence-based sensor for selective and sensitive detection of amoxicillin (Amox) in aqueous medium: application to pharmaceutical and biomedical analysis. Lumin 32(6):918–923

    CAS  Google Scholar 

  17. Li S, Ma X, Pang C, Li H, Liu C, Xu Z, Luo J, Yang Y (2020) Novel molecularly imprinted amoxicillin sensor based on a dual recognition and dual detection strategy. Anal Chim Acta 1127:69–78

    Article  CAS  PubMed  Google Scholar 

  18. Chen L, Liu D, Peng J, Du Q, He H (2020) Ratiometric fluorescence sensing of metal-organic frameworks: tactics and perspectives. Coord Chem Rev 404:213113

    Article  CAS  Google Scholar 

  19. Wu S, Min H, Shi W, Cheng P (2020) Multicenter metal–organic framework-based ratiometric fluorescent sensors. Adv Mater 32(3):1805871

    Article  CAS  Google Scholar 

  20. Li L, Yang L, Lin D, Xu S, Mei C, Yu S, Jiang C (2023) Hydrogen-bond induced enhanced emission ratiometric fluorescent handy needle for visualization assay of amoxicillin by smartphone sensing platform. J Hazard Mater 444:130403

    Article  CAS  PubMed  Google Scholar 

  21. Wang Q, Astruc D (2020) State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chem Rev 120(2):1438–1511

    Article  CAS  PubMed  Google Scholar 

  22. O’Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem Rev 112(2):675–702

    Article  PubMed  Google Scholar 

  23. Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal–organic frameworks. Chem Soc Rev 38(5):1330–1352

    Article  CAS  PubMed  Google Scholar 

  24. Samanta P, Let S, Mandal W, Dutta S, Ghosh SK (2020) Luminescent metal–organic frameworks (LMOFs) as potential probes for the recognition of cationic water pollutants. Inorg Chem Front 7(9):1801–1821

    Article  CAS  Google Scholar 

  25. Haldar R, Bhattacharyya S, Maji TK (2020) Luminescent metal–organic frameworks and their potential applications. J Chem Sci 132(1):99

    Article  CAS  Google Scholar 

  26. Chen J, Zhu Y, Kaskel S (2021) Porphyrin-based metal–organic frameworks for biomedical applications. Angew Chem Int Ed 60(10):5010–5035

    Article  CAS  Google Scholar 

  27. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851

    Article  PubMed  Google Scholar 

  28. Zhang X, Wasson MC, Shayan M, Berdichevsky EK, Ricardo-Noordberg J, Singh Z, Papazyan EK, Castro AJ, Marino P, Ajoyan Z, Chen Z, Islamoglu T, Howarth AJ, Liu Y, Majewski MB, Katz MJ, Mondloch JE, Farha OK (2021) A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coord Chem Rev 429:213615

    Article  CAS  PubMed  Google Scholar 

  29. Tereshchenko AA, Butova VV, Guda AA, Burachevskaya OA, Bugaev AL, Bulgakov AN, Skorynina AA, Rusalev YV, Pankov IV, Volochaev VA, Al-Omoush M, Ozhogin IV, Borodkin GS, Soldatov AV (2022) Rational functionalization of UiO-66 with Pd nanoparticles: synthesis and in situ fourier-transform infrared monitoring. Inorg Chem 61(9):3875–3885

    Article  CAS  PubMed  Google Scholar 

  30. Butova VV, Budnyk AP, Guda AA, Lomachenko KA, Bugaev AL, Soldatov AV, Chavan SM, Øien-Ødegaard S, Olsbye U, Lillerud KP, Atzori C, Bordiga S, Lamberti C (2017) Modulator effect in UiO-66-NDC (1,4-naphthalenedicarboxylic acid) synthesis and comparison with UiO-67-NDC isoreticular metal–organic frameworks. Cryst Growth Des 17(10):5422–5431

    Article  CAS  Google Scholar 

  31. Nam D-H, Shekhah O, Lee G, Mallick A, Jiang H, Li F, Chen B, Wicks J, Eddaoudi M, Sargent EH (2020) Intermediate binding control using metal–organic frameworks enhances electrochemical CO2 reduction. J Am Chem Soc 142(51):21513–21521

    Article  CAS  PubMed  Google Scholar 

  32. Naik TSK, Singh S, Pavithra N, Varshney R, Uppara B, Singh J, Khan NA, Singh L, Arshad MZ, Ramamurthy PC (2023) Advanced experimental techniques for the sensitive detection of a toxic bisphenol A using UiO-66-NDC/GO-based electrochemical sensor. Chemosphere 311:137104

    Article  Google Scholar 

  33. Butova VV, Budnyk AP, Charykov KM, Vetlitsyna-Novikova KS, Bugaev AL, Guda AA, Damin A, Chavan SM, Øien-Ødegaard S, Lillerud KP, Soldatov AV, Lamberti C (2019) Partial and complete substitution of the 1,4-benzenedicarboxylate linker in UiO-66 with 1,4-naphthalenedicarboxylate: synthesis, characterization, and H2-adsorption properties. Inorg Chem 58(2):1607–1620

    Article  CAS  PubMed  Google Scholar 

  34. Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL (2021) Power of infrared and raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules. Chem Rev 121(3):1286–1424

    Article  CAS  PubMed  Google Scholar 

  35. Ma J, Wang S, Wang T, Ma J, Wang Z (2023) Ratiometric fluorescence assay for pyrophosphate based on sulfur nanodots decorated metal-organic frameworks. Chem Eur J 29(35):e202300366

    Article  CAS  PubMed  Google Scholar 

  36. Feng D, Chung W-C, Wei Z, Gu Z-Y, Jiang H-L, Chen Y-P, Darensbourg DJ, Zhou H-C (2013) Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. J Am Chem Soc 135(45):17105–17110

    Article  CAS  PubMed  Google Scholar 

  37. Ma J, Wang W, Li Y, Lu Z, Tan X, Han H (2021) Novel porphyrin Zr metal–organic framework (PCN-224)-based ultrastable electrochemiluminescence system for PEDV sensing. Anal Chem 93(4):2090–2096

    Article  CAS  PubMed  Google Scholar 

  38. Motz RN, Sun AC, Lehnherr D, Ruccolo S (2023) High-throughput determination of Stern-Volmer quenching constants for common photocatalysts and quenchers. ACS Org Inorg Au 3(5):266–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geethanjali HS, Nagaraja D, Melavanki RM, Kusanur RA (2015) Fluorescence quenching of boronic acid derivatives by aniline in alcohols – a negative deviation from Stern-Volmer equation. J Lumin 167:216–221

    Article  CAS  Google Scholar 

  40. Junejo Y, Güner A, Baykal A (2014) Synthesis and characterization of amoxicillin derived silver nanoparticles: its catalytic effect on degradation of some pharmaceutical antibiotics. Appl Surf Sci 317:914–922

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (22175052), Science Fund for Creative Research Groups of Nature Science Foundation of Hebei Province (B2021201038), Central Government Guided Local Science and Technology Development Fund (Hebei, 236Z0602G), High level Talent Funding Project of Hebei Province (C20231052), and Foundation of President of Hebei University (XZJJ202211), Innovation Training Program Project for College Students (2023138).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-e Shi, Shufang Kou or Zhenguang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12908 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Shi, Ye., Song, Q. et al. Efficient porphyrin integrated UiO-66 probes for ratiometric fluorescence sensing of antibiotic residues in milk. Microchim Acta 191, 304 (2024). https://doi.org/10.1007/s00604-024-06391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06391-4

Keywords

Navigation