Skip to main content
Log in

Development of a time-resolved immunochromatographic test strip for rapid and quantitative determination of GFAP in serum

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Glial fibrillary acidic protein (GFAP) in serum has been shown as a biomarker of traumatic brain injury (TBI) which is a significant global public health concern. Accurate and rapid detection of serum GFAP is critical for TBI diagnosis. In this study, a time-resolved fluorescence immunochromatographic test strip (TRFIS) was proposed for the quantitative detection of serum GFAP. This TRFIS possessed excellent linearity ranging from 0.05 to 2.5 ng/mL for the detection of serum GFAP and displayed good linearity (Y = 598723X + 797198, R2 = 0.99), with the lowest detection limit of 16 pg/mL. This TRFIS allowed for quantitative detection of serum GFAP within 15 min and showed high specificity. The intra-batch coefficient of variation (CV) and the inter-batch CV were both < 4.0%. Additionally, this TRFIS was applied to detect GFAP in the serum samples from healthy donors and patients with cerebral hemorrhage, and the results of TRFIS could efficiently discern the patients with cerebral hemorrhage from the healthy donors. Our developed TRFIS has the characteristics of high sensitivity, high accuracy, and a wide linear range and is suitable for rapid and quantitative determination of serum GFAP on-site.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets and materials used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Hutchinson E, Osting S, Rutecki P, Sutula T (2022) Diffusion tensor orientation as a microstructural MRI marker of mossy fiber sprouting after TBI in rats. J Neuropathol Exp Neurol 81(1):27–47. https://doi.org/10.1093/jnen/nlab123

    Article  CAS  PubMed  Google Scholar 

  2. Menon DK, Schwab K, Wright DW, Maas AI (2010) Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil 91(11):1637–1640. https://doi.org/10.1016/j.apmr.2010.05.017

    Article  PubMed  Google Scholar 

  3. Capizzi A, Woo J, Verduzco-Gutierrez M (2020) Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Med Clin North Am 104(2):213–238. https://doi.org/10.1016/j.mcna.2019.11.001

    Article  PubMed  Google Scholar 

  4. Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA (2008) Mild traumatic brain injury in U.S. soldiers returning from Iraq. N Engl J Med 358(5):453–463. https://doi.org/10.1056/NEJMoa072972

    Article  CAS  PubMed  Google Scholar 

  5. Ma J, Zhang K, Wang Z, Chen G (2016) Progress of research on diffuse axonal injury after traumatic brain injury. Neural Plast 2016:9746313. https://doi.org/10.1155/2016/9746313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dixon KJ (2017) Pathophysiology of traumatic brain injury. Phys Med Rehabil Clin N Am 28(2):215–225. https://doi.org/10.1016/j.pmr.2016.12.001

    Article  PubMed  Google Scholar 

  7. Mahan MY, Thorpe M, Ahmadi A, Abdallah T, Casey H, Sturtevant D et al (2019) Glial fibrillary acidic protein (GFAP) outperforms S100 calcium-binding protein B (S100B) and ubiquitin C-terminal hydrolase L1 (UCH-L1) as predictor for positive computed tomography of the head in trauma subjects. World Neurosurg 128:e434–ee44. https://doi.org/10.1016/j.wneu.2019.04.170

    Article  PubMed  Google Scholar 

  8. Jang SH (2020) Diagnostic problems in diffuse axonal injury. Diagnostics 10(2). https://doi.org/10.3390/diagnostics10020117

  9. Li XY, Feng DF (2009) Diffuse axonal injury: novel insights into detection and treatment. J Clin Neurosci: Official J Neurosurg Soc Australasia 16(5):614–619. https://doi.org/10.1016/j.jocn.2008.08.005

    Article  Google Scholar 

  10. Mata-Mbemba D, Mugikura S, Nakagawa A, Murata T, Ishii K, Kushimoto S et al (2018) Traumatic midline subarachnoid hemorrhage on initial computed tomography as a marker of severe diffuse axonal injury. J Neurosurg 129(5):1317–1324. https://doi.org/10.3171/2017.6.Jns17466

    Article  PubMed  Google Scholar 

  11. Anderson TN, Hwang J, Munar M, Papa L, Hinson HE, Vaughan A et al (2020) Blood-based biomarkers for prediction of intracranial hemorrhage and outcome in patients with moderate or severe traumatic brain injury. The J Trauma Acute Care Surg 89(1):80–86. https://doi.org/10.1097/ta.0000000000002706

    Article  CAS  PubMed  Google Scholar 

  12. Zwirner J, Lier J, Franke H, Hammer N, Matschke J, Trautz F et al (2021) GFAP positivity in neurons following traumatic brain injuries. Int J Legal Med 135(6):2323–2333. https://doi.org/10.1007/s00414-021-02568-1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Abdelhak A, Foschi M, Abu-Rumeileh S, Yue JK, D’Anna L, Huss A et al (2022) Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol 18(3):158–172. https://doi.org/10.1038/s41582-021-00616-3

    Article  CAS  PubMed  Google Scholar 

  14. Kawata K, Liu CY, Merkel SF, Ramirez SH, Tierney RT, Langford D (2016) Blood biomarkers for brain injury: what are we measuring? Neurosci Biobehav Rev 68:460–473. https://doi.org/10.1016/j.neubiorev.2016.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bogoslovsky T, Wilson D, Chen Y, Hanlon D, Gill J, Jeromin A et al (2017) Increases of plasma levels of glial fibrillary acidic protein, Tau, and amyloid β up to 90 days after traumatic brain injury. J Neurotrauma 34(1):66–73. https://doi.org/10.1089/neu.2015.4333

    Article  PubMed  PubMed Central  Google Scholar 

  16. Papa L, Brophy GM, Welch RD, Lewis LM, Braga CF, Tan CN et al (2016) Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol 73(5):551–560. https://doi.org/10.1001/jamaneurol.2016.0039

    Article  PubMed  PubMed Central  Google Scholar 

  17. Castaño-Leon AM, Sánchez Carabias C, Hilario A, Ramos A, Navarro-Main B, Paredes I et al (2023) Serum assessment of traumatic axonal injury: the correlation of GFAP, t-Tau, UCH-L1, and NfL levels with diffusion tensor imaging metrics and its prognosis utility. J Neurosurg 138(2):454–464. https://doi.org/10.3171/2022.5.Jns22638

    Article  PubMed  Google Scholar 

  18. Hao N, Wang K (2016) Recent development of electrochemiluminescence sensors for food analysis. Anal Bioanal Chem 408(25):7035–7048. https://doi.org/10.1007/s00216-016-9548-2

    Article  CAS  PubMed  Google Scholar 

  19. Gumus E, Bingol H, Zor E (2023) Lateral flow assays for detection of disease biomarkers. J Pharm Biomed Anal 225:115206. https://doi.org/10.1016/j.jpba.2022.115206

    Article  CAS  PubMed  Google Scholar 

  20. Banerjee R, Jaiswal A (2018) Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 143(9):1970–1996. https://doi.org/10.1039/c8an00307f

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Chen Q, Wang Y, Tu F, Chen X, Li J et al (2023) A time-resolved fluorescent microsphere-lateral flow immunoassay strip assay with image visual analysis for quantitative detection of Helicobacter pylori in saliva. Talanta 256:124317. https://doi.org/10.1016/j.talanta.2023.124317

    Article  CAS  PubMed  Google Scholar 

  22. Yao N, Li X, Tian Y, Huang Z, Duan Y (2023) Core-shell Au@PdNPs based colorimetric enhanced lateral flow immunoassay for C-reactive protein detection. Sensors Actuators B Chem 379:133247. https://doi.org/10.1016/j.snb.2022.133247

    Article  CAS  Google Scholar 

  23. Qi H, Sun Q, Ma Y, Wu P, Wang J (2020) Advantages of lateral flow assays based on fluorescent submicrospheres and quantum dots for Clostridium difficile toxin B detection. Toxins 12(11). https://doi.org/10.3390/toxins12110722

  24. Guo M, Zhou B, Huang Z, Zhao C, Zhang J, Huang B (2017) A new method for determination of alfatoxin M1 in milk by ultrasensitive time-resolved fluoroimmunoassay. Food Anal Methods 10(8):2848–2855. https://doi.org/10.1007/s12161-017-0850-1

    Article  Google Scholar 

  25. Hu LM, Luo K, Xia J, Xu GM, Wu CH, Han JJ et al (2017) Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine. Biosens Bioelectron 91:95–103. https://doi.org/10.1016/j.bios.2016.12.030

    Article  CAS  PubMed  Google Scholar 

  26. Salminen T, Juntunen E, Talha SM, Pettersson K (2019) High-sensitivity lateral flow immunoassay with a fluorescent lanthanide nanoparticle label. J Immunol Methods 465:39–44. https://doi.org/10.1016/j.jim.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Chen X, Wu J, Liu Z, Wang J, Song C et al (2021) Portable, rapid, and sensitive time-resolved fluorescence immunochromatography for on-site detection of dexamethasone in milk and pork. Foods 10(6). https://doi.org/10.3390/foods10061339

  28. Jiang J, Luo P, Liang J, Shen X, Lei H, Li X (2022) A highly sensitive and quantitative time resolved fluorescent microspheres lateral flow immunoassay for streptomycin and dihydrostreptomycin in milk, honey, muscle, liver, and kidney. Anal Chim Acta 1192:339360. https://doi.org/10.1016/j.aca.2021.339360

    Article  CAS  PubMed  Google Scholar 

  29. Zhou S, Xu X, Wang L, Liu L, Kuang H, Xu C (2022) Rapid, on-site quantitative determination of higenamine in functional food using a time-resolved fluorescence microsphere test strip. Food Chem 387:132859. https://doi.org/10.1016/j.foodchem.2022.132859

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Guo L, Wu A, Song S, Liu L, Xu C et al (2023) Immunochromatographic assay for the analysis of methomyl in cabbage and tomato. Food Chem 409:135273. https://doi.org/10.1016/j.foodchem.2022.135273

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Xu X, Liu L, Xu L, Kuang H, Xu C (2023) Development of a GNP-based lateral flow immunoassay for the detection of isoprothiolane in rice samples. Food Chem 404(Pt A):134483. https://doi.org/10.1016/j.foodchem.2022.134483

    Article  CAS  PubMed  Google Scholar 

  32. Ye L, Lei X, Xu X, Xu L, Kuang H, Xu C (2023) Gold-based paper for antigen detection of monkeypox virus. Analyst 148(5):985–994. https://doi.org/10.1039/d2an02043b

    Article  CAS  PubMed  Google Scholar 

  33. Kohl TO, Ascoli CA (2017) Indirect immunometric ELISA. Cold Spring Harb Protoc 2017(5). https://doi.org/10.1101/pdb.prot093708

  34. Stanker LH, Merrill P, Scotcher MC, Cheng LW (2008) Development and partial characterization of high-affinity monoclonal antibodies for botulinum toxin type A and their use in analysis of milk by sandwich ELISA. J Immunol Methods 336(1):1–8. https://doi.org/10.1016/j.jim.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  35. Sun J, Li M, Xing F, Wang H, Zhang Y, Sun X (2022) Novel dual immunochromatographic test strip based on double antibodies and biotin-streptavidin system for simultaneous sensitive detection of aflatoxin M1 and ochratoxin A in milk. Food Chem 375:131682. https://doi.org/10.1016/j.foodchem.2021.131682

    Article  CAS  PubMed  Google Scholar 

  36. Li M, Wang H, Sun J, Ji J, Ye Y, Lu X et al (2021) Rapid, on-site, and sensitive detection of aflatoxin M1 in milk products by using time-resolved fluorescence microsphere test strip. Food Control 121:107616. https://doi.org/10.1016/j.foodcont.2020.107616

    Article  CAS  Google Scholar 

  37. Sapin V, Gaulmin R, Aubin R, Walrand S, Coste A, Abbot M (2021) Blood biomarkers of mild traumatic brain injury: state of art. Neuro-Chirurgie 67(3):249–254. https://doi.org/10.1016/j.neuchi.2021.01.001

    Article  CAS  PubMed  Google Scholar 

  38. Voss JD, Connolly J, Schwab KA, Scher AI (2015) Update on the epidemiology of concussion/mild traumatic brain injury. Curr Pain Headache Rep 19(7):32. https://doi.org/10.1007/s11916-015-0506-z

    Article  PubMed  Google Scholar 

  39. Wang MC, Linnau KF, Tirschwell DL, Hollingworth W (2006) Utility of repeat head computed tomography after blunt head trauma: a systematic review. J Trauma 61(1):226–233. https://doi.org/10.1097/01.ta.0000197385.18452.89

    Article  PubMed  Google Scholar 

  40. Hill EP, Stiles PJ, Reyes J, Nold RJ, Helmer SD, Haan JM (2017) Repeat head imaging in blunt pediatric trauma patients: is it necessary? The J Trauma Acute Care Surg 82(5):896–900. https://doi.org/10.1097/ta.0000000000001406

    Article  PubMed  Google Scholar 

  41. Mani K, Cater B, Hudlikar A (2017) Cognition and return to work after mild/moderate traumatic brain injury: a systematic review. Work (reading, mass) 58(1):51–62. https://doi.org/10.3233/wor-172597

    Article  PubMed  Google Scholar 

  42. Wang KK, Yang Z, Zhu T, Shi Y, Rubenstein R, Tyndall JA et al (2018) An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 18(2):165–180. https://doi.org/10.1080/14737159.2018.1428089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Siman R, Cui H, Wewerka SS, Hamel L, Smith DH, Zwank MD (2020) Serum SNTF, a surrogate marker of axonal injury, is prognostic for lasting brain dysfunction in mild TBI treated in the emergency department. Front Neurol 11:249. https://doi.org/10.3389/fneur.2020.00249

    Article  PubMed  PubMed Central  Google Scholar 

  44. Buonora JE, Yarnell AM, Lazarus RC, Mousseau M, Latour LL, Rizoli SB et al (2015) Multivariate analysis of traumatic brain injury: development of an assessment score. Front Neurol 6:68. https://doi.org/10.3389/fneur.2015.00068

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zongo D, Ribéreau-Gayon R, Masson F, Laborey M, Contrand B, Salmi LR et al (2012) S100-B protein as a screening tool for the early assessment of minor head injury. Ann Emerg Med 59(3):209–218. https://doi.org/10.1016/j.annemergmed.2011.07.027

    Article  PubMed  Google Scholar 

  46. Wilkinson CW, Pagulayan KF, Petrie EC, Mayer CL, Colasurdo EA, Shofer JB et al (2012) High prevalence of chronic pituitary and target-organ hormone abnormalities after blast-related mild traumatic brain injury. Front Neurol 3:11. https://doi.org/10.3389/fneur.2012.00011

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gavett BE, Stern RA, McKee AC (2011) Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin Sports Med 30(1):179–88, xi. https://doi.org/10.1016/j.csm.2010.09.007

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Science and Technology Planning Project of Guangdong Province (no. 2023B1212060062), the Science and Technology Commissioner Project of Guangdong Province (GDKTP2021003800), the Natural Science Foundation of Hubei Province for Youths, China (2022CFB923), the Administration of Traditional Chinese Medicine of Hubei Province for Youths, China (ZY2023Q001), and the Science and Technology Planning Project of Guangzhou (202201011643).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, experimental design, data curation, and original draft preparation: Yupeng Wang, Zhiyong Yu, Zhenqiu Ning, Minghui Li, Weiping Li, Yizhe Zhong, Huiqiang Chen, Xi Zhang, Xialin Tang, Xiao Cheng, Laiqing Li, Abduldayeva Aigul, and Jie Zan; investigation and manuscript review: Yupeng Wang, Zhiyong Yu, Zhenqiu Ning, Minghui Li, Weiping Li, Yizhe Zhong, Huiqiang Chen, Xi Zhang, Xialin Tang, Xiao Cheng, Laiqing Li, and Jie Zan; supervision and funding acquisition: Xialin Tang, Xiao Cheng, Laiqing Li, and Jie Zan. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yupeng Wang or Jie Zan.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Institutional Ethics Board of the Guangdong Provincial Hospital of Traditional Chinese Medicine (YE2022-369-01).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, Z., Ning, Z. et al. Development of a time-resolved immunochromatographic test strip for rapid and quantitative determination of GFAP in serum. Microchim Acta 191, 325 (2024). https://doi.org/10.1007/s00604-024-06385-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06385-2

Keywords

Navigation