Skip to main content
Log in

Double base mismatches mediated catalytic hairpin assembly for enzyme-free single-base mutation detection: integrating signal recognition and amplification in one

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Single nucleotide polymorphism (SNP) biosensors are emerging rapidly for their promising applications in human disease prevention diagnosis, treatment, and prognosis. However, it remains a bottleneck in equipping simple and stable biosensors with the traits of high sensitivity, non-enzyme, and low cost. Double base mismatches mediated chain displacement reactions have attracted fascinating advantages of tailorable thermodynamics stability, non-enzyme, and excellent assembly compliance to involvement in SNP identification. As the base mismatch position and amount in DNA sequence can be artificially adjusted, it provides plenty of selectivity and specificity for exploring perfect biosensors. Herein, a biosensor with double base mismatches mediated catalytic hairpin assembly (CHA) is designed via one base mismatch in the toehold domain and the other base mismatch in the stem sequence of hairpin 1 (H1) by triggering CHA reaction to achieve selective amplification of the mutation target (MT) and fluorescence resonance energy transfer (FRET) effect that is composed of Cy3 and Cy5 terminally attached H1 and hairpin 2 (H2). Depending on the rationally designed base mismatch position and toehold length, the fabricated biosensors show superior SNP detection performance, exhibiting a good linearity with high sensitivity of 6.6 fM detection limit and a broad detection abundance of 1%. The proposed biosensor can be used to detect the KRAS mutation gene in real samples and obtain good recoveries between 106 and 116.99%. Remarkably, these extendible designs of base mismatches can be used for more types of SNP detection, providing flexible adjustment based on base mismatch position and toehold length variations, especially for their thermodynamic model for DNA-strand displacement reactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data will be available on request.

References

  1. Claussnitzer M, Cho JH, Collins R, Cox NJ, Dermitzakis ET, Hurles ME, Kathiresan S, Kenny EE, Lindgren CM, MacArthur DG, North KN, Plon SE, Rehm HL, Risch N, Rotimi CN, Shendure J, Soranzo N, McCarthy MI (2020) A brief history of human disease genetics. Nature 577:179–189. https://doi.org/10.1038/s41586-019-1879-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roth TL, Marson A (2021) Annual review of pathology: mechanisms of disease. Annu Rev 16:145–166. https://doi.org/10.1146/annurev-pathmechdis012419-032626

    Article  CAS  Google Scholar 

  3. Deng M, Ouyang C, Yang K, Lv W, Huang T, Li X, Zhou M, Wu H, Xie M, Shi P, Gao K, Yi R, Peng W, Chu H, Chen J (2022) An acid-labile bridged β-CD-based nano-hydrogel with superior anti-tumor drug delivery and release capacity. J Drug Delivery Sci Technol 78:103953. https://doi.org/10.1016/j.jddst.2022.103953

    Article  CAS  Google Scholar 

  4. Zhang Y, Huang T, Lv W, Yang K, Ouyang C, Deng M, Yi R, Chu H, Chen J (2023) Controlled growth of titanium dioxide nanotubes for doxorubicin loading and studies of in vitro antitumor activity. Front. Bioeng. Biotechnol. 11. https://doi.org/10.3389/fbioe.2023.1201320

  5. Lv W, Yang K, Yu J, Wu Y, Zhang M, Liu Z, Wang X, Zhou J, Ma H, Yi R, Chu H, Chen J (2023) A generalizable strategy for crosslinkable albumin-based hydrogels and application as potential anti-tumor nanoplatform. J Biomater Appl 37:1813–1822. https://doi.org/10.1177/08853282231166489

    Article  CAS  PubMed  Google Scholar 

  6. Yi R, Lv W, Zheng S, Zhang N, Zhang Y, Yang K, Huang T, Yang Y, Chu H, Chen J (2022) IFN-γ/Doxorubicin complex nanoparticles for enhancing therapy in the context of human ovarian carcinoma. Front Mater 9:944930. https://doi.org/10.3389/fmats.2022.944930

    Article  Google Scholar 

  7. Chen L, Hong M, Luan C, Gao H, Ru G, Guo X, Zhang D, Zhang S, Li C, Wu J, Randolph PB, Sousa AA, Qu C, Zhu Y, Guan Y, Wang L, Liu M, Feng B, Song G, Liu DR, Li D (2023) Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos. Nat Biotechnol. https://doi.org/10.1038/s41587-023-01821-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Newby GA, Yen JS, Woodard KJ, Mayuranathan T, Lazzarotto CR, Li Y, Sheppard-Tillman H, Porter SN, Yao Y, Mayberry K, Everette KA, Jang Y, Podracky CJ, Thaman E, Lechauve C, Sharma A, Henderson JM, Richter MF, Zhao KT, Miller SM, Wang T, Koblan LW, McCaffrey AP, Tisdale JF, Kalfa TA, Pruett-Miller SM, Tsai SQ, Weiss MJ, Liu DR (2021) Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595:295–302. https://doi.org/10.1038/s41586-021-03609-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Villiger L, Rothgangl T, Witzigmann D, Oka R, Lin PJC, Qi W, Janjuha S, Berk C, Ringnalda F, Beattie MB, Stoffel M, Thöny B, Hall J, Rehrauer H, van Boxtel R, Tam YK, Schwank G (2021) In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nat Biomed Eng 5:179–189. https://doi.org/10.1038/s41551-020-00671-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yeh WH, Shubina-Oleinik O, Levy JM, Pan B, Newby GA, Wornow M, Burt R, Chen JC, Holt JR, Liu DR (2020) In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci. Transl. Med. 12:1–12. https://doi.org/10.1126/scitranslmed.aay9101

    Article  Google Scholar 

  11. Zhang X, Zhu B, Chen L, Xie L, Yu W, Wang Y, Li L, Yin S, Yang L, Hu H, Han H, Li Y, Wang L, Chen G, Ma X, Geng H, Huang W, Pang X, Yang Z, Wu Y, Siwko S, Kurita R, Nakamura Y, Yang L, Liu M, Li D (2020) Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol 38:856–860. https://doi.org/10.1038/s41587-020-0527-y

    Article  CAS  PubMed  Google Scholar 

  12. Samad Hosseini S, Jebelli A, Vandghanooni S, Jahanban-Esfahlan A, Baradaran B, Amini M, Bidar N, de la Guardia M, Mokhtarzadeh A, Eskandani M (2022) Perspectives and trends in advanced DNA biosensors for the recognition of single nucleotide polymorphisms. Chem Eng J 441:135988. https://doi.org/10.1016/j.cej.2022.135988

    Article  CAS  Google Scholar 

  13. Khodakov D, Li J, Zhang JX, Zhang DY (2021) Highly multiplexed rapid DNA detection with single-nucleotide specificity via convective PCR in a portable device. Nat Biomed Eng 5:702–712. https://doi.org/10.1038/s41551-021-00755-4

    Article  CAS  PubMed  Google Scholar 

  14. Petralia S, Vigilanza A, Sciuto E, Maffia M, Romanini A, Conoci S (2021) The MC1R single nucleotide polymorphisms identification by DNA-microarray on miniaturized silicon chip. Sens Actuators, B 346:130514. https://doi.org/10.1016/j.snb.2021.130514

    Article  CAS  Google Scholar 

  15. Bathini S, Pakkiriswami S, Ouellette RJ, Ghosh A, Packirisamy M (2021) Magnetic particle based liquid biopsy chip for isolation of extracellular vesicles and characterization by gene amplification. Biosens Bioelectron 194:113585. https://doi.org/10.1016/j.bios.2021.113585

    Article  CAS  PubMed  Google Scholar 

  16. Purwidyantri A, Ipatov A, Domingues T, Borme J, Martins M, Alpuim P, Prado M (2022) Programmable graphene-based microfluidic sensor for DNA detection. Sens Actuators, B 367:132044. https://doi.org/10.1016/j.snb.2022.132044

    Article  CAS  Google Scholar 

  17. Aggeli D, Karas VO, Sinnott-Armstrong NA, Varghese V, Shafer RW, Greenleaf WJ, Sherlock G (2018) Diff-seq: a high throughput sequencing-based mismatch detection assay for DNA variant enrichment and discovery. Nucleic Acids Res 46:e42–e42. https://doi.org/10.1093/nar/gky022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wei X-r, Meng Y, Xu Q, Hu J, Zhang C-y (2022) Label-free and homogeneous detection of flap endonuclease 1 by ligation-promoted hyperbranched rolling circle amplification platform. Talanta 243:123342. https://doi.org/10.1016/j.talanta.2022.123342

    Article  CAS  PubMed  Google Scholar 

  19. Wu H, Ma X, Chu Y, Qi X, Zou B, Liu Y, Zhou G (2022) Digital nucleic acid signal amplification platform for highly sensitive DNA mutation analysis. Anal Chem 94:3858–3864. https://doi.org/10.1021/acs.analchem.1c04765

    Article  CAS  PubMed  Google Scholar 

  20. Ye X, Wang N, Li Y, Fang X, Kong J (2021) A high-specificity flap probe-based isothermal nucleic acid amplification method based on recombinant FEN1-Bst DNA polymerase. Biosens Bioelectron 192:113503. https://doi.org/10.1016/j.bios.2021.113503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu D, Yin B-C, Ye B-C (2011) A label-free electrochemical DNA sensor based on exonuclease III-aided target recycling strategy for sequence-specific detection of femtomolar DNA. Biosens Bioelectron 28:232–238. https://doi.org/10.1016/j.bios.2011.07.029

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Xu S, Chen J, Wang L, Bian L, Ye J, Weng L, Zhao X, Lin CT, Li S, Zhang D (2024) A biosensor using semi-DNA walker and CHA -FRET loop for ultrasensitive detection of single nucleotide polymorphism. Sens Actuators, B 400:134908. https://doi.org/10.1016/j.snb.2023.134908

    Article  CAS  Google Scholar 

  23. Wang H-Q, Liu W-Y, Wu Z, Tang L-J, Xu X-M, Yu R-Q, Jiang J-H (2011) Homogeneous label-free genotyping of single nucleotide polymorphism using ligation-mediated strand displacement amplification with DNAzyme-based chemiluminescence detection. Anal Chem 83:1883–1889. https://doi.org/10.1021/ac200138v

    Article  CAS  PubMed  Google Scholar 

  24. Jauset-Rubio M, Ortiz M, O’Sullivan CK (2021) Solid-phase primer elongation using biotinylated dNTPs for the detection of a single nucleotide polymorphism from a fingerprick blood sample. Anal Chem 93:14578–14585. https://doi.org/10.1021/acs.analchem.1c03419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang S, Liu Q, Hu J, Yuan D, Zhang Y, Zhang CY (2022) Target-triggered assembly of functional G-quadruplex DNAzyme nanowires for sensitive detection of miRNA in lung tissues. Sens Actuators, B 373:132689. https://doi.org/10.1016/j.snb.2022.132689

    Article  CAS  Google Scholar 

  26. Zhang Y, Wang C, Zou X, Tian X, Hu J, Zhang C-y (2021) Simultaneous enzyme-free detection of multiple long noncoding RNAs in cancer cells at single-molecule/particle level. Nano Lett 21:4193–4201. https://doi.org/10.1021/acs.nanolett.0c05137

    Article  CAS  PubMed  Google Scholar 

  27. Modi S, Bhatia D, Simmel FC, Krishnan Y (2010) Structural DNA nanotechnology: from bases to bricks, from structure to function. J Phys Chem Lett 1:1994–2005. https://doi.org/10.1021/jz1004957|J

    Article  CAS  Google Scholar 

  28. Burns JR, Stulz E, Howorka S (2013) Self-Assembled DNA Nanopores That Span Lipid Bilayers. Nano Lett 13:2351–2356. https://doi.org/10.1021/nl304147f

    Article  CAS  PubMed  Google Scholar 

  29. Wang Q, Wang J, Huang Y, Du Y, Zhang Y, Cui Y, Kong D-m (2022) Development of the DNA-based biosensors for high performance in detection of molecular biomarkers: more rapid, sensitive, and universal. Biosens Bioelectron 197:113739. https://doi.org/10.1016/j.bios.2021.113739

    Article  CAS  PubMed  Google Scholar 

  30. Li C, Wang Y, Li P-F, Fu Q (2023) Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications. Acta Biomater 160:1–13. https://doi.org/10.1016/j.actbio.2023.02.005

    Article  CAS  PubMed  Google Scholar 

  31. Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608 https://www.nature.com/articles/35020524

    Article  CAS  PubMed  Google Scholar 

  32. Guo Y, Wei B, Xiao S, Yao D, Li H, Xu H, Song T, Li X, Liang H (2017) Recent advances in molecular machines based on toehold-mediated strand displacement reaction. Quant Biol 5:25–41. https://doi.org/10.1007/s40484-017-0097-2

    Article  Google Scholar 

  33. Zhang DY, Winfree E (2009) Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc 131:17303–17314. https://doi.org/10.1021/ja906987s

    Article  CAS  PubMed  Google Scholar 

  34. Liu J, Zhang Y, Xie H, Zhao L, Zheng L, Ye H (2019) Applications of catalytic hairpin assembly reaction in biosensing. Small 15:1902989. https://doi.org/10.1002/smll.201902989

    Article  CAS  Google Scholar 

  35. Li M-X, Xu C-H, Zhang N, Qian G-S, Zhao W, Xu J-J, Chen H-Y (2018) Exploration of the kinetics of toehold-mediated strand displacement via plasmon rulers. ACS Nano 12:3341–3350. https://doi.org/10.1021/acsnano.7b08673

    Article  CAS  PubMed  Google Scholar 

  36. Irmisch P, Ouldridge TE, Seidel R (2020) Modeling DNA-strand displacement reactions in the presence of base-pair mismatches. J Am Chem Soc 142:11451–11463. https://doi.org/10.1021/jacs.0c03105

    Article  CAS  PubMed  Google Scholar 

  37. Lysne D, Hachigian T, Thachuk C, Lee J, Graugnard E (2023) Leveraging steric moieties for kinetic control of DNA Strand Displacement Reactions. J Am Chem Soc 145:16691–16703. https://doi.org/10.1021/jacs.3c04344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ding S, Yu X, Zhao Y, Zhao C (2023) Identification of single nucleotide polymorphisms by a peptide nucleic acid-based sandwich hybridization assay coupled with toehold-mediated strand displacement reactions. Anal Chim Acta 1242:340810. https://doi.org/10.1016/j.aca.2023.340810

    Article  CAS  PubMed  Google Scholar 

  39. Xu M, Wang X, Tian J, Chen J, Wei X, Li W (2022) A clamp-improved universal amplified system for ratiometric fluorescent detection of single-nucleotide polymorphisms coupled with a novel dual-emissive silver nanocluster. Sens Actuators, B 367:132151. https://doi.org/10.1016/j.snb.2022.132151

    Article  CAS  Google Scholar 

  40. Ambrogio C, Köhler J, Zhou Z-W, Wang H, Paranal R, Li J, Capelletti M, Caffarra C, Li S, Lv Q, Gondi S, Hunter JC, Lu J, Chiarle R, Santamaría D, Westover KD, Jänne PA (2018) KRAS dimerization impacts MEK inhibitor sensitivity and oncogenic activity of mutant KRAS. Cell 172:857-868.e15. https://doi.org/10.1016/j.cell.2017.12.020

    Article  CAS  PubMed  Google Scholar 

  41. Kostyrko K, Román M, Lee AG, Simpson DR, Dinh PT, Leung SG, Marini KD, Kelly MR, Broyde J, Califano A, Jackson PK, Sweet-Cordero EA (2023) UHRF1 is a mediator of KRAS driven oncogenesis in lung adenocarcinoma. Nat. Commun. 14. https://doi.org/10.1038/s41467-023-39591-2

Download references

Funding

This work was supported by the Scientific Research Fund of Hunan Provincial Education Department (22A0348), the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ5156), and the National College Students’ Innovation and Entrepreneurship Training Program, China (No. S202310534001 and S202310534137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenlin Xie, Bobo Cai or Jian Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Bu, S., Xu, S. et al. Double base mismatches mediated catalytic hairpin assembly for enzyme-free single-base mutation detection: integrating signal recognition and amplification in one. Microchim Acta 191, 334 (2024). https://doi.org/10.1007/s00604-024-06366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06366-5

Keywords

Navigation