Skip to main content
Log in

Development of aptamer surface-enhanced Raman spectroscopy sensor based on Fe3O4@Pt and Au@Ag nanoparticles for the determination of acetamiprid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

As a common chlorinated nicotinic pesticide with high insecticidal activity, acetamiprid has been widely used for pest control. However, the irrational use of acetamiprid will pollute the environment and thus affect human health. Therefore, it is crucial to develop a simple, highly sensitive, and rapid method for acetamiprid residue detection. In this study, the capture probe (Fe3O4@Pt-Aptamer) was connected with the signal probe (Au@DTNB@Ag CS-cDNA) to form an assembly with multiple SERS-enhanced effects. Combined with magnetic separation technology, a SERS sensor with high sensitivity and stability was constructed to detect acetamiprid residue. Based on the optimal conditions, the SERS intensity measured at 1333 cm−1 is in relation to the concentration of acetamiprid in the range 2.25 × 10−9–2.25 × 10−5 M, and the calculated limit of detection (LOD) was 2.87 × 10−10 M. There was no cross-reactivity with thiacloprid, clothianidin, nitenpyram, imidacloprid, and chlorpyrifos, indicating that this method has good sensitivity and specificity. Finally, the method was applied to the detection of acetamiprid in cucumber samples, and the average recoveries were 94.19–103.58%, with RSD < 2.32%. The sensor can be used to analyse real samples with fast detection speed, high sensitivity, and high selectivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Guo Y, Yang F, Yao Y et al (2021) Novel Au-tetrahedral aptamer nanostructure for the electrochemiluminescence detection of acetamiprid. J Hazard Mater 401:123794. https://doi.org/10.1016/j.jhazmat.2020.123794

    Article  CAS  PubMed  Google Scholar 

  2. Wang J, Zhang D, Xu K, Hui N, Wang D (2022) Electrochemical assay of acetamiprid in vegetables based on nitrogen-doped graphene/polypyrrole nanocomposites. Microchim Acta 189:395. https://doi.org/10.1007/s00604-022-05490-4

    Article  CAS  Google Scholar 

  3. Phogat A, Singh J, Kumar V, Malik V (2022) Toxicity of the acetamiprid insecticide for mammals: a review. Environ Chem Lett 20:1453–1478. https://doi.org/10.1007/s10311-021-01353-1

    Article  CAS  Google Scholar 

  4. Bai F, Bu T, Zhao S et al (2022) Golf-shaped Bi2Se3 microparticles based-immunochromatographic strip for ultrasensitive detection of acetamiprid. J Hazard Mater 433:128810. https://doi.org/10.1016/j.jhazmat.2022.128810

    Article  CAS  PubMed  Google Scholar 

  5. Shi X, Sun J, Yao Y et al (2020) Novel electrochemical aptasensor with dual signal amplification strategy for detection of acetamiprid. Sci Total Environ 705:135905. https://doi.org/10.1016/j.scitotenv.2019.135905

    Article  CAS  PubMed  Google Scholar 

  6. Harischandra NR, Pallavi MS, Bheemanna M et al (2021) Simultaneous determination of 79 pesticides in pigeonpea grains using GC-MS/MS and LC-MS/MS. Food Chem 347:128986. https://doi.org/10.1016/j.foodchem.2020.128986

    Article  CAS  PubMed  Google Scholar 

  7. Janta P, Wongla B, Phayoonhong W et al (2022) Analysis of low-volatility pesticides in cabbage by high temperature comprehensive two-dimensional gas chromatography. Anal Methods 14:3180–3187. https://doi.org/10.1039/d2ay00998f

    Article  CAS  PubMed  Google Scholar 

  8. Yıldırım İ, Çiftçi U (2022) Monitoring of pesticide residues in peppers from Çanakkale (Turkey) public market using QuEChERS method and LC-MS/MS and GC-MS/MS detection. Environ Monit Assess 194:570. https://doi.org/10.1007/s10661-022-10253-y

    Article  CAS  PubMed  Google Scholar 

  9. Feizy J, Nezhadali A, Es’haghi Z, Beheshti HR (2017) HPLC Determination of hexythiazox in food samples by MISPE extraction. Chromatographia 80:437–446. https://doi.org/10.1007/s10337-017-3251-0

    Article  CAS  Google Scholar 

  10. Kongmany S, Hoa TT, Hanh LT et al (2016) Semi-preparative HPLC separation followed by HPLC/UV and tandem mass spectrometric analysis of phorbol esters in Jatropha seed. J Chromatogr B Analyt Technol Biomed Life Sci 1038:63–72. https://doi.org/10.1016/j.jchromb.2016.10.016

    Article  CAS  PubMed  Google Scholar 

  11. Amero P, Lokesh GLR, Chaudhari RR et al (2021) Conversion of RNA aptamer into modified DNA aptamers provides for prolonged stability and enhanced antitumor activity. J Am Chem Soc 143:7655–7670. https://doi.org/10.1021/jacs.9b10460

    Article  CAS  PubMed  Google Scholar 

  12. Chen Q, Sheng R, Wang P et al (2020) Ultra-sensitive detection of malathion residues using FRET-based upconversion fluorescence sensor in food. Spectrochim Acta A Mol Biomol Spectrosc 241:118654. https://doi.org/10.1016/j.saa.2020.118654

    Article  CAS  PubMed  Google Scholar 

  13. Chen X, Lisi F, Bakthavathsalam P et al (2021) Impact of the coverage of aptamers on a nanoparticle on the binding equilibrium and kinetics between aptamer and protein. ACS Sens 6:538–545. https://doi.org/10.1021/acssensors.0c02212

    Article  CAS  PubMed  Google Scholar 

  14. Kalita JJ, Sharma P, Bora U (2023) Recent developments in application of nucleic acid aptamer in food safety. Food Control 145:109406. https://doi.org/10.1016/j.foodcont.2022.109406

    Article  CAS  Google Scholar 

  15. Liu R, Zhang F, Sang Y et al (2022) Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends Food Sci Technol 123:355–375. https://doi.org/10.1016/j.tifs.2022.03.025

    Article  CAS  Google Scholar 

  16. Luo Z, Chen S, Zhou J et al (2022) Application of aptamers in regenerative medicine. Front Bioeng Biotechnol 10:976960. https://doi.org/10.3389/fbioe.2022.976960

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou J, Zhao X, Huang G et al (2021) Molecule-specific terahertz biosensors based on an aptamer hydrogel-functionalized metamaterial for sensitive assays in aqueous environments. ACS Sens 6:1884–1890. https://doi.org/10.1021/acssensors.1c00174

    Article  CAS  PubMed  Google Scholar 

  18. Bai F, Bu T, Li R et al (2022) Rose petals-like Bi semimetal embedded on the zeolitic imidazolate frameworks based-immunochromatographic strip to sensitively detect acetamiprid. J Hazard Mater 423:127202. https://doi.org/10.1016/j.jhazmat.2021.127202

    Article  CAS  PubMed  Google Scholar 

  19. Ge K, Hu Y, Zheng Y, Jiang P, Li G (2021) Aptamer/derivatization-based surface-enhanced Raman scattering membrane assembly for selective analysis of melamine and formaldehyde in migration of melamine kitchenware. Talanta 235:122743. https://doi.org/10.1016/j.talanta.2021.122743

    Article  CAS  PubMed  Google Scholar 

  20. Pal S, Harmsen S, Oseledchyk A, Hsu HT, Kircher MF (2017) MUC1 aptamer targeted SERS nanoprobes. Adv Funct Mater 27:1606632. https://doi.org/10.1002/adfm.201606632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shi J, Wen G, Liang A, Jiang Z (2023) A novel bifunctional molecularly imprinted polymer-based SERS/RRS dimode nanosensor for ultratrace acetamiprid. Talanta 260:124640. https://doi.org/10.1016/j.talanta.2023.124640

    Article  CAS  PubMed  Google Scholar 

  22. Fan H, Pan Z-Q, Gu H-Y (2010) The self-assembly, characterization and application of hemoglobin immobilized on Fe3O4@Pt core-shell nanoparticles. Microchim Acta 168:239–244. https://doi.org/10.1007/s00604-009-0279-3

    Article  CAS  Google Scholar 

  23. Madrakian T, Asl KD, Ahmadi M, Afkhami A (2016) Fe3O4@Pt/MWCNT/carbon paste electrode for determination of a doxorubicin anticancer drug in a human urine sample. RSC Adv 6:72803–72809. https://doi.org/10.1039/c6ra13935c

    Article  CAS  Google Scholar 

  24. Huang R, Liu R (2017) Efficient in situ growth of platinum nanoclusters on the surface of Fe3O4 for the detection of latent fingermarks. J Mater Sci 52:13455–13465. https://doi.org/10.1007/s10853-017-1475-x

    Article  CAS  Google Scholar 

  25. Song C, Sun Y, Li J et al (2019) Silver-mediated temperature-controlled selective deposition of Pt on hexoctahedral Au nanoparticles and the high performance of Au@AgPt NPs in catalysis and SERS. Nanoscale 11:18881–18893. https://doi.org/10.1039/c9nr04705k

    Article  CAS  PubMed  Google Scholar 

  26. Xu H, Shang H, Wang C, Du Y (2020) Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting. Coord Chem Rev 418:213374. https://doi.org/10.1016/j.ccr.2020.213374

    Article  CAS  Google Scholar 

  27. Liu Y, Zhou J, Gong J et al (2013) The investigation of electrochemical properties for Fe3O4@Pt nanocomposites and an enhancement sensing for nitrite. Electrochim Acta 111:876–887. https://doi.org/10.1016/j.electacta.2013.08.077

    Article  CAS  Google Scholar 

  28. Sankar SS, Sangeetha K, Karthick K et al (2018) Pt nanoparticle tethered DNA assemblies for enhanced catalysis and SERS applications. New J Chem 42:15784–15792. https://doi.org/10.1039/c8nj03940b

    Article  CAS  Google Scholar 

  29. Wu Y, He Y, Yang X, Yuan R, Chai Y (2018) A novel recyclable surface-enhanced Raman spectroscopy platform with duplex-specific nuclease signal amplification for ultrasensitive analysis of microRNA 155. Sens Actuators B Chem 275:260–266. https://doi.org/10.1016/j.snb.2018.08.057

    Article  CAS  Google Scholar 

  30. Chen R, Sun Y, Huo B et al (2021) Development of Fe3O4@Au nanoparticles coupled to Au@Ag core-shell nanoparticles for the sensitive detection of zearalenone. Anal Chim Acta 1180:338888. https://doi.org/10.1016/j.aca.2021.338888

    Article  CAS  PubMed  Google Scholar 

  31. Jia X, Wang C, Rong Z et al (2018) Dual dye-loaded Au@Ag coupled to a lateral flow immunoassay for the accurate and sensitive detection of Mycoplasma pneumoniae infection. RSC Adv 8:21243–21251. https://doi.org/10.1039/c8ra03323d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li S, He D, Li S et al (2022) Magnetic halloysite nanotube-based SERS biosensor enhanced with Au@Ag core-shell nanotags for bisphenol A determination. Biosensors 12:387. https://doi.org/10.3390/bios12060387. (Basel)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liao W, Chen Y, Huang L et al (2021) A capillary-based SERS sensor for ultrasensitive and selective detection of Hg2+ by amalgamation with Au@4-MBA@Ag core-shell nanoparticles. Microchim Acta 188:354. https://doi.org/10.1007/s00604-021-05016-4

    Article  CAS  Google Scholar 

  34. Lin S, Hasi W, Lin X et al (2020) Lab-on-capillary platform for on-site quantitative SERS analysis of surface contaminants based on Au@4-MBA@Ag core-shell nanorods. ACS Sens 5:1465–1473. https://doi.org/10.1021/acssensors.0c00398

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, Wu C, Yuan R, Huang JA, Yang X (2022) Gap controlled self-assembly Au@Ag@Au NPs for SERS assay of thiram. Food Chem 390:133164. https://doi.org/10.1016/j.foodchem.2022.133164

    Article  CAS  PubMed  Google Scholar 

  36. Song D, Yang R, Fang S et al (2018) SERS based aptasensor for ochratoxin A by combining Fe3O4@Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with multiple signal enhancement. Microchim Acta 185:491. https://doi.org/10.1007/s00604-018-3020-2

    Article  CAS  Google Scholar 

  37. Xu W, Zhao A, Zuo F et al (2020) Au@Ag core-shell nanoparticles for microRNA-21 determination based on duplex-specific nuclease signal amplification and surface-enhanced Raman scattering. Microchim Acta 187:384. https://doi.org/10.1007/s00604-020-04330-7

    Article  CAS  Google Scholar 

  38. He H, Sun DW, Pu H, Huang L (2020) Bridging Fe3O4@Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1. Food Chem 324:126832. https://doi.org/10.1016/j.foodchem.2020.126832

    Article  CAS  PubMed  Google Scholar 

  39. Zhou Z, Xiao R, Cheng S et al (2021) A universal SERS-label immunoassay for pathogen bacteria detection based on Fe3O4@Au-aptamer separation and antibody-protein A orientation recognition. Anal Chim Acta 1160:338421. https://doi.org/10.1016/j.aca.2021.338421

    Article  CAS  PubMed  Google Scholar 

  40. Zhang W, Shen F, Hong R (2011) Solvothermal synthesis of magnetic Fe3O4 microparticles via self-assembly of Fe3O4 nanoparticles. Particuology 9:179–186. https://doi.org/10.1016/j.partic.2010.07.025

    Article  CAS  Google Scholar 

  41. Huynh K-H, Pham X-H, Hahm E et al (2020) Facile histamine detection by surface-enhanced Raman scattering using SiO2@Au@Ag alloy nanoparticles. Int J Mol Sci 21:4048. https://doi.org/10.3390/ijms21114048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuan Y, Bi S, Zhang F et al (2023) Rapid determination of isepamicin by using SERS based on BSA-protected AgNPs modified by α-Fe2O3. Spectrochim Acta A Mol Biomol Spectrosc 285:121942. https://doi.org/10.1016/j.saa.2022.121942

    Article  CAS  PubMed  Google Scholar 

  43. Li X, Li L, Wang Y et al (2023) Ag NPs@PDMS nanoripple array films as SERS substrates for rapid in situ detection of pesticide residues. Spectrochim Acta A Mol Biomol Spectrosc 299:122877. https://doi.org/10.1016/j.saa.2023.122877

    Article  CAS  PubMed  Google Scholar 

  44. Ren Y, Fan Z (2023) Synthesis of fluorescent probe based on molecularly imprinted polymers on nitrogen-doped carbon dots for determination of tobramycin in milk. Food Chem 416:135792. https://doi.org/10.1016/j.foodchem.2023.135792

    Article  CAS  PubMed  Google Scholar 

  45. Hu F, Fu Q, Li Y et al (2024) Zinc-doped carbon quantum dots-based ratiometric fluorescence probe for rapid, specific, and visual determination of tetracycline hydrochloride. Food Chem 431:137097. https://doi.org/10.1016/j.foodchem.2023.137097

    Article  CAS  PubMed  Google Scholar 

  46. Deng D, Wang Y, Wen S et al (2023) Metal-organic framework composite Mn/Fe-MOF@Pd with peroxidase-like activities for sensitive colorimetric detection of hydroquinone. Anal Chim Acta 1279:341797. https://doi.org/10.1016/j.aca.2023.341797

    Article  CAS  PubMed  Google Scholar 

  47. Wang G, Feng N, Zhao S et al (2024) Synthesis and DFT calculation of microbe-supported Pd nanocomposites with oxidase-like activity for sensitive detection of nitrite. Food Chem 434:137422. https://doi.org/10.1016/j.foodchem.2023.137422

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32202146).

Author information

Authors and Affiliations

Authors

Contributions

Sa Dong and Jianguo Feng: investigation, data curation, supervision, funding acquisition, and writing—review and editing. Zixin Zhu and Qiuyun Shi: writing—original draft, visualization, data curation, and investigation. Kangli He and Jianwei Wu: resources and validation.

Corresponding authors

Correspondence to Sa Dong or Jianguo Feng.

Ethics declarations

Ethics approval

This article does not contain any studies with human or animal subjects.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Zhu, Z., Shi, Q. et al. Development of aptamer surface-enhanced Raman spectroscopy sensor based on Fe3O4@Pt and Au@Ag nanoparticles for the determination of acetamiprid. Microchim Acta 191, 289 (2024). https://doi.org/10.1007/s00604-024-06351-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06351-y

Keywords

Navigation