Skip to main content
Log in

A molecule-imprinted electrochemiluminescence sensor based on CdS@MWCNTs for ultrasensitive detection of fenpropathrin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A molecularly-imprinted electrochemiluminescence sensor was constructed for the determination of fenpropathrin (FPT) by molecular imprinting technology. In this sensing platform, the introduction of CdS@MWCNTs significantly enhanced the initial ECL signal of the luminol-O2 system. Specifically, MWCNTs was used as a carrier to adsorb more CdS, in which CdS acted as a co-reaction promoter for luminescence. Molecularly imprinted polymer (MIP) containing specific recognition sites of FPT was used as the material for selective recognition. With increasing amount of FPT the ECL signal decreased. Under the optimum conditions, the ECL response was linearly related to the logarithm of FPT concentration. The developed ECL sensor allowed for sensitive determination of FPT and exhibited a wide linear range from 1.0 × 10− 10 mol L− 1 to 1.0 × 10− 6 mol L− 1. The limit of detection was 3.3 × 10− 11 mol L− 1 (S/N = 3). It can be used for the detection of FPT in vegetable samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Park J, Park SK, Choi YH (2019) Environmental pyrethroid exposure and diabetes in U.S. adults. Environ Res 172:399–407. https://doi.org/10.1016/j.envres.2018.12.043

    Article  CAS  PubMed  Google Scholar 

  2. Fang L, Jia M, Zhao H, Kang L, Shi L, Zhou L, Kong W (2021) Molecularly imprinted polymer-based optical sensors for pesticides in foods: recent advances and future trends. Trends Food Sci Technol 116:387–404. https://doi.org/10.1016/j.tifs.2021.07.039

    Article  CAS  Google Scholar 

  3. Li X, Zeng D, Liao YY, Tsunoda M, Zhang YX, Xie X, Wang R, Li RS, Hu WT, Deng SM, Song YT (2020) Magnetic nanoparticle-assisted in situ ionic liquid dispersive liquid-liquid microextraction of pyrethroid pesticides in urine samples. Microchem J 159:105350. https://doi.org/10.1016/j.microc.2020.105350

    Article  CAS  Google Scholar 

  4. Zhou QX, Zhang XG, Xie GH (2011) Preconcentration and determination of pyrethroid in-secticides in water with ionic liquid dispersive liquid-phase microextraction in combination with high performance liquid chromatography. Anal Methods 3:356–361. https://doi.org/10.1039/c0ay00570c

    Article  CAS  PubMed  Google Scholar 

  5. Kretschmann A, Cedergreen N, Christensen JH (2015) Measuring internal azole and pyrethroid pesticide concentrations in Daphnia magna using QuEChERS and GC-ECD-method development with a focus on matrix effects. Anal Bioanal Chem 408:1055–1066. https://doi.org/10.1007/s00216-015-9197-x

    Article  CAS  PubMed  Google Scholar 

  6. Qian H, Hu L, Liu CR, Wang HZ, Gao HX, Zhou WF (2018) Determination of four pyrethroid insecticides in water samples through membrane emulsification-assisted liquid-liquid microextraction based on solidification of floating organic droplets. J Chromatogr A 1559:86–94. https://doi.org/10.1016/j.chroma.2018.04

    Article  CAS  PubMed  Google Scholar 

  7. Lawal A, Wong RCS, Tan GH, Abdulra’uf LB (2019) Determination of pesticide residues in fruit and vegetables by high-performance liquid chromatography-tandem mass spectrometry with multivariate response surface methodology. Anal Lett 52:231–248. https://doi.org/10.1080/00032719.2018.1459655

    Article  CAS  Google Scholar 

  8. Guerrero-Esteban T, Gutiérrez-Sánchez C, Martínez-Periñán E, Revenga-Parra M, Pariente F, Lorenzo E (2021) Sensitive glyphosate electrochemiluminescence immunosensor based on electrografted carbon nanodots. Sens Actuators B 330:129389. https://doi.org/10.1016/j.snb.2020.129389

    Article  CAS  Google Scholar 

  9. Mahmoudpour M, Torbati M, Mousavi MM, de la Guardia M, Nazhad Dolatabadi JE (2020) Nanomaterial-based molecularly imprinted polymers for pesticides detection: recent trends and future prospects. TRAC Trends Anal Chem 129:115943. https://doi.org/10.1016/j.trac.2020.115943

    Article  CAS  Google Scholar 

  10. Uzun L, Turner APF (2016) Molecularly-imprinted polymer sensors: realising their potential. Biosens Bioelectron 76:131–144. https://doi.org/10.1016/j.bios.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  11. Wackerlig J, Schirhagl R (2015) Applications of molecularly imprinted polymernanoparticles and their advances toward industrial use: a review. Anal Chem 88:250–261. https://doi.org/10.1021/acs.analchem.5b03804

    Article  CAS  PubMed  Google Scholar 

  12. Capoferri D, Álvarez-Diduk R, Del Carlo M, Compagnone D, Merkoçi A (2018) Electrochromic molecular imprinting sensor for visual and smartphone-based detections. Anal Chem 90:5850–5856. https://doi.org/10.1021/acs.analchem.8b00389

    Article  CAS  PubMed  Google Scholar 

  13. Hu Y, He YC, Peng ZC, Li YC (2020) A ratiometric electrochemiluminescence sensing platform for robust ascorbic acid analysis based on a molecularly imprinted polymer modified bipolar electrode. Biosens Bioelectron 167:112490. https://doi.org/10.1016/j.bios.2020.112490

    Article  CAS  PubMed  Google Scholar 

  14. Tian L, Wu KX, Hu Y, Wang Y, Zhao YJ, Chen RZ, Lu J (2020) A molecularly imprinted electrochemiluminescence nanoprobe based on complexes consisting of CdTe and multiwall carbon nanotube for sensitive determination of clenbuterol. Microchim Acta 187:358. https://doi.org/10.1007/s00604-020-04319-2

    Article  CAS  Google Scholar 

  15. Pirot M, Omer SM K (2022) Surface imprinted polymer on dual emitting MOF functionalized with blue copper nanoclusters and yellow carbon dots as a highly specific ratiometric fluorescence probe for ascorbic acid. Microchem J 182:107921. https://doi.org/10.1016/j.microc.2022.107921

    Article  CAS  Google Scholar 

  16. Li H, Xie T, Shi D, Jin J, Xie C (2016) Enhanced electrochemiluminescence of luminol at the gold nanoparticle/carbon nanotube/electropolymerised molecular imprinting composite membrane interface for selective recognition of triazophos. Int J Environ Anal Chem 96:1300–1311. https://doi.org/10.1080/03067319.2016.1250261

    Article  CAS  Google Scholar 

  17. Liu GY, Ling J, Xie HZ, Li JP (2022) Ultrasensitive molecularly imprinted electrochemiluminescence sensor based on enzyme-encapsulated liposome-linked signal amplification for trace analysis. Sens Actuators B 355:131263. https://doi.org/10.1016/j.snb.2021.131263

    Article  CAS  Google Scholar 

  18. Nasiri KY, Sun SG (2020) A novel MIP-ECL sensor based on RGO-CeO2NPs/Ru(bpy)32+-Chitosan for ultratrace determination of trimipramine. J Mater Chem B. https://doi.org/10.1039.D0TB01666G

  19. Khan MS, Zhu WJ, Ali A, Ahmad SM, Li XJ, Yang L, Wang YG, Wang H, Wei Q (2019) Electrochemiluminescent immunosensor for prostate specific antigen based upon luminol functionalized platinum nanoparticles loaded on graphene. Anal Biochem 566:50–57. https://doi.org/10.1016/j.ab.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  20. Sha H, Wang Y, Zhang Y, Ke H, Xiong X, Jia N (2018) Enzyme-free ECL immunesensor based on PbS nanocrystals for highly sensitive detection of alpha fetoprotein. Sens Actuators B 277:157–163. https://doi.org/10.1016/j.snb.2018.09.006

    Article  CAS  Google Scholar 

  21. Wu FF, Zhou Y, Zhang H, Yuan R, Chai YQ (2018) Electrochemiluminescence peptide-based biosensor with hetero-nanostructures as coreaction accelerator for the ultrasensitive determination of tryptase. Anal Chem 90:2263–2270. https://doi.org/10.1021/acs.analchem.7b04631

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Tian L, Wu KX, Sun Z, Wu Q, Shan XY, Zhao YJ, Chen RZ, Lu J (2022) High sensitivity electrochemiluminescence sensor based on the synergy of ZIF-7 and CdTe for determination of glucose. Microchem J 177:107254. https://doi.org/10.1016/j.microc.2022.107254

    Article  CAS  Google Scholar 

  23. Zhao YJ, Tian L, Zhang X, Sun Z, Shan XY, Wu Q, Chen RZ, Lu J (2022) A novel molecularly imprinted polymer electrochemiluminescence sensor based on Fe2O3@Ru(bpy)32+ for determination of clenbuterol. Sensors and Actuators B: Chemical, l350: 130822. https://doi.org/10.1016/j.snb.2021.130822

  24. Arab N, Fotouhi L, Salis A (2021) Electrosynthesised CdS@ZnS quantum dots decorated multi walled carbon nanotubes for analysis of propranolol in biological fluids and pharmaceutical samples. Microchem J 168:106453. https://doi.org/10.1016/j.microc.2021.106453

    Article  CAS  Google Scholar 

  25. Li ZP, Dong WX, Du XY, Wen GM, Fan XJ (2020) A novel photoelectrochemical sensor based on g-C3N4@CdS QDs for sensitive detection of Hg2+. Microchem J 152:104259. https://doi.org/10.1016/j.microc.2019.104259

    Article  CAS  Google Scholar 

  26. Liang H, Song DD, Gong JM (2014) Signal-on electrochemiluminescence of biofunctional CdTe quantum dots for biosensing of organophosphate pesticides. Biosens Bioelectron 53:363–369. https://doi.org/10.1016/j.bios.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  27. Sun Z, Lu J, Zhang X, Shan XY, Wu Q, Li C, Li HL, Yang SN, Tian L (2023) Electrospun nanofibres containing Zn-MOF for electrochemiluminescent determination of fenpropathrin residues in fruit juices. Food Chem 405:134950. https://doi.org/10.1016/j.foodchem.2022.134950

    Article  CAS  Google Scholar 

  28. Chen PP, Liu Z, Liu JH, Liu HB, Bian WW, Tian D, Xia FQ, Zhou CL (2020) A novel electrochemiluminescence aptasensor based CdTe QDs@NH2-MIL-88(Fe) for signal amplification. Electrochim Acta 354:136644. https://doi.org/10.1016/j.electacta.2020.136644

    Article  CAS  Google Scholar 

  29. Haghighi B, Tavakoli A, Bozorgzadeh S (2015) Cathodic electrogenerated chemiluminescence of luminol on glassy carbon electrode modified with cobalt nanoparticles decorated multi-walled carbon nanotubes. Electrochim Acta 154:259–265. https://doi.org/10.1016/j.electacta.2014.11.175

    Article  CAS  Google Scholar 

  30. Xu JJ, Zhang RR, Liu CX, Sun AL, Chen J, Zhang ZM, Shi XM (2020) Highly selective electrochemiluminescence sensor based on molecularly imprinted-quantum dots for the sensitive detection of cyfluthrin. Sensors 20:884. https://doi.org/10.3390/s20030884

    Article  PubMed  PubMed Central  Google Scholar 

  31. Oliveira JFA, Milão TM, Araújo VD, Moreira ML, Longo E, Bernardi MIB (2011) Influence of different solvents on the structural, optical and morphological properties of CdS nanoparticles. J Alloys Compd 509:6880–6883. https://doi.org/10.1016/j.jallcom.2011.03.171

    Article  CAS  Google Scholar 

  32. Wang ML, Sun YN, Yang ML (2018) CdS QDs amplified electrochemiluminescence of N,S co-doped graphene quantum dots and its application for pb(II) determination. Chem Lett 47:44–47. https://doi.org/10.1246/cl.170846

    Article  CAS  Google Scholar 

  33. Karadurmus L, Ozcelikay G, Armutcu C, Ozkan A S (2022) Electrochemical chiral sensor based on molecularly imprinted polymer for determination of (1S, 2S)-pseudoephedrine in dosage forms and biological sample. Microchem J 181:107820. https://doi.org/10.1016/j.microc.2022.107820

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Jilin Education Foundation (JJKH20230905KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Tian.

Ethics declarations

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal.

relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Tian, L., Shan, X. et al. A molecule-imprinted electrochemiluminescence sensor based on CdS@MWCNTs for ultrasensitive detection of fenpropathrin. Microchim Acta 191, 269 (2024). https://doi.org/10.1007/s00604-024-06296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06296-2

Keywords

Navigation