Skip to main content
Log in

Promoting effect of TiVC MXene on cathodic electrogenerated chemiluminescence of Ru(bpy)32+ and its application in the sensitive detection of sulfite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The enhanced cathodic ECL of Ru(bpy)32+ at a bimetallic element MXenes (TiVC MXene) modified electrode in neutral aqueous condition is reported. TiVC MXene significantly catalyzed the oxygen reduction reaction (ORR) as well as the electrochemical reduction of Ru(bpy)32+ to produce reactive oxygen species and Ru(bpy)3+. The obtained hydroxyl radical (OH∙) not only oxidized Ru(bpy)3+ to generate Ru(bpy)32+* and emit light through coreactant pathway, but also oxidized Ru(bpy)32+ to Ru(bpy)33+, which caused an annihilation ECL reaction. As a result, two pathways occurred simultaneously to generate strong cathodic ECL signal. Sulfite removes the dissolved oxygen in water and reduces the occurrence of ORR, which prohibits the generation of OH∙ to decrease the ECL signal. The decrement of ECL intensity varied linearly with the concentration of sulfite in the range 2 nM to 50 μM with a detection limit of 0.14 nM (3σ). The proposed sensor exhibited good analytical performance, and could be used in the detection of sulfite in real samples. The results revealed that the electrocatalytic behavior of TiVC MXene is the key factor for strong cathodic Ru(bpy)32+ ECL, which provides new application in ECL sensing field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All relevant data are within the manuscript and its Additional files.

References

  1. Zhao ML, Zeng WJ, Chai YQ, Yuan R, Zhuo Y (2020) An affinity-enhanced DNA intercalator with intense ECL embedded in DNA hydrogel for biosensing applications. Anal Chem 92:11044–11052. https://doi.org/10.1021/acs.analchem.0c00152

    Article  CAS  PubMed  Google Scholar 

  2. Bai WQ, Cui AP, Liu MZ, Qiao XZ, Li Y, Wang T (2019) Signal-off electrogenerated chemiluminescence biosensing platform based on the quenching effect between ferrocene and Ru(bpy)32+-functionalized metal-organic frameworks for the detection of methylated RNA. Anal Chem 91:11840–11847. https://doi.org/10.1021/acs.analchem.9b02569

    Article  CAS  PubMed  Google Scholar 

  3. Li PP, Luo L, Cheng D, Sun Y, Zhang YY, Liu ML, Yao SZ (2022) Regulation of the structure of zirconium-based porphyrinic metal-organic framework as highly electrochemiluminescence sensing platform for thrombin. Anal Chem 94:5707–5714. https://doi.org/10.1021/acs.analchem.2c00737

    Article  CAS  PubMed  Google Scholar 

  4. Liu W, Chen AY, Li SK, Peng KF, Chai YQ, Yuan R (2019) Perylene derivative/luminol nanocomposite as a strong electrochemiluminescence emitter for construction of an ultrasensitive microRNA biosensor. Anal Chem 91:1516–1523. https://doi.org/10.1021/acs.analchem.8b04638

    Article  CAS  PubMed  Google Scholar 

  5. Zhao QQ, Xue JW, Ren X, Fan DW, Kuang X, Li YY, Wei Q, Ju HX (2021) Competitive electrochemiluminescence aptasensor based on the Ru(II) derivative utilizing intramolecular ECL emission for E2 detection. Sens Actuat B Chem 348:130717. https://doi.org/10.1016/j.snb.2021.130717

    Article  CAS  Google Scholar 

  6. Shi HW, Zhao W, Liu Z, Liu XC, Wu MS, Xu JJ, Chen HY (2016) Joint enhancement strategy applied in ECL biosensor based on closed bipolar electrodes for the detection of PSA. Talanta 154:169–174. https://doi.org/10.1016/j.talanta.2016.03.059

    Article  CAS  PubMed  Google Scholar 

  7. Zhou XM, Li MJ, Niu SF, Han J, Chen SP, Xie G (2023) Copper nanocluster-Ru(dcbpy)32+ as a cathodic ECL-RET probe combined with 3D bipedal DNA walker amplification for bioanalysis. Analyst 148:114–119. https://doi.org/10.1039/D2AN01321E

    Article  CAS  Google Scholar 

  8. Wu MS, Xu N, Qiao JT, Chen JH, Jin LS (2019) Bipolar electrode-electrochemiluminescence (ECL) biosensor based on a hybridization chain reaction. Analyst 144:4633–4638. https://doi.org/10.1039/C9AN01022J

    Article  CAS  PubMed  Google Scholar 

  9. Li HJ, Han S, Hu LZ, Xu GB (2009) Progress in Ru(bpy)32+ electrogenerated chemiluminescence. Chin J Anal Chem 37:1557–1565. https://doi.org/10.1016/S1872-2040(08)60139-5

    Article  CAS  Google Scholar 

  10. Cao WD, Xu GB, Zhang ZL, Dong SJ (2002) Novel tris(2,2A-bipyridine)ruthenium(II) cathodic electrochemiluminescence in aqueous solution at a glassy carbon electrode. Chem Commun 14:1540–1541. https://doi.org/10.1039/B202606F

    Article  Google Scholar 

  11. Nie FY, Shang L, Zhang W, Jia LP, Ma RN, Xue QW, Wang HS (2023) Cathodic electrochemiluminescence of Ru(bpy)32+ based on porous partially reduced graphene oxide for detecting carcinoembryonic antigen. J Electroanal Chem 928:117055. https://doi.org/10.1016/j.jelechem.2022.117055

    Article  CAS  Google Scholar 

  12. Wu LX, Lu XB, Wu ZS, Dong YF, Wang XH, Zheng SH, Chen JP (2018) 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens Bioelectron 107:69–75. https://doi.org/10.1016/j.bios.2018.02.021

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Zhang HX, Zhuang TT, Liu JX, Sojic N, Wang ZH (2022) Sensitive electrochemiluminescence biosensing of polynucleotide kinase using the versatility of two-dimensional Ti3C2TX MXene nanomaterials. Anal Chim Acta 1191:339346. https://doi.org/10.1016/j.aca.2021.339346

    Article  CAS  PubMed  Google Scholar 

  14. Zhang HX, Wang ZH, Wang F, Zhang YM, Wang HY, Liu Y (2020) In situ formation of gold nanoparticles decorated Ti3C2 MXenes nanoprobe for highly sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins. Anal Chem 92:5546–5553. https://doi.org/10.1021/acs.analchem.0c00469

    Article  CAS  PubMed  Google Scholar 

  15. Sun Y, Li PP, Zhu Y, Zhu XH, Zhang YY, Liu MJ, Liu Y (2021) In situ growth of TiO2 nanowires on Ti3C2 MXenes nanosheets as highly sensitive luminol electrochemiluminescent nanoplatform for glucose detection in fruits, sweat and serum samples. Biosens Bioelectron 194:113600. https://doi.org/10.1016/j.bios.2021.113600

    Article  CAS  PubMed  Google Scholar 

  16. Huang W, Wang Y, Liang WB, Hu GB, Yao LY, Yang Y, Zhou K, Yuan R, Xiao DR (2021) Two birds with one stone: surface functionalization and delamination of multilayered Ti3C2Tx MXene by grafting a ruthenium(II) complex to achieve conductivity-enhanced electrochemiluminescence. Anal Chem 93:1834–1841. https://doi.org/10.1021/acs.analchem.0c04782

    Article  CAS  PubMed  Google Scholar 

  17. Yang L, Wu TT, Du Y, Zhang N, Feng RQ, Ma HM, Wei Q (2021) PEGylation improved electrochemiluminescence supramolecular assembly of Iridium(III) complexes in apoferritin for immunoassays using 2D/2D MXene/TiO2 hybrids as signal amplifiers. Anal Chem 93:16906–16914. https://doi.org/10.1021/acs.analchem.1c04006

    Article  CAS  PubMed  Google Scholar 

  18. Wong ZCM, Tan TL, Tieu AJK, Yang SW, Xu GQ (2019) Computational discovery of transparent conducting in-plane ordered MXene (i-MXene) alloys. Chem Mater 31:4124–4132. https://doi.org/10.1021/acs.chemmater.9b00881

    Article  CAS  Google Scholar 

  19. He ZQ, Rong TD, Li Y, Ma JJ, Li QS, Wu FR, Wang YH, Wang FP (2022) Two-dimensional TiVC solid-solution MXene as surface-enhanced raman scattering substrate. ACS Nano 16:4072–4083. https://doi.org/10.1021/acsnano.1c09736

    Article  CAS  PubMed  Google Scholar 

  20. Li T, Chen XY, Wang K, Hu ZG (2022) Small-molecule fluorescent probe for detection of sulfite. Pharmaceuticals 15:1326. https://doi.org/10.3390/ph15111326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nandhini C, Saravana Kumar P, Shanmugapriya R, Vennila KN, Al-Sehemi AG, Pannipara M, Elango KP (2022) A combination of experimental and TD-DFT investigations on the fluorescent detection of sulfite and bisulfite ions in aqueous solution via nucleophilic addition reaction. J Photoch Photobio A 425:113668. https://doi.org/10.1016/j.jphotochem.2021.113668

    Article  CAS  Google Scholar 

  22. Shi Q, Shen LY, Xu H, Wang ZY, Yang XJ, Huang YL, Redshaw C, Zhang QL (2021) A 1-Hydroxy-2,4-diformylnaphthalene-based fluorescent probe and its detection of sulfites/bisulfite. Molecules 26:3064. https://doi.org/10.3390/molecules26113064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Samantha Gonçalves Z, Molognoni L, Daguer H, Pimenta R, Barcellos Hoff R, Amadeu Micke G, Vitali L (2022) Simultaneous extraction/derivatization for the analysis of sulfite by capillary electrophoresis: A high-throughput reference method to meet the demand of seafood inspection. Food Res Int 161:111780. https://doi.org/10.1016/j.foodres.2022.111780

    Article  CAS  PubMed  Google Scholar 

  24. Jankovskiene G, Daunoravicius Z, Padarauskas A (2001) Capillary electrophoretic determination of sulfite using the zone-passing technique of in-capillary derivatization. J Chromatogr A 934:67–73. https://doi.org/10.1016/S0021-9673(01)01295-X

    Article  CAS  PubMed  Google Scholar 

  25. Wang SL, Cao XZ, Gao T, Wang XB, Zou H, Zeng WB (2018) A ratiometric upconversion nanoprobe for fluorometric turn-on detection of sulfite and bisulfite. Microchim Acta 185:218. https://doi.org/10.1007/s00604-018-2757-y

    Article  CAS  Google Scholar 

  26. Zhao WT, Yang Y, Deng QH, Dai QY, Fang Z, Fu XL, Yan WW, Wu LZ, Zhou Y (2023) Toward an understanding of bimetallic MXene solid-solution in binder-free electrocatalyst cathode for advanced Li-CO2 batteries. Adv Funct Mater 33:2210037. https://doi.org/10.1002/adfm.202210037

    Article  CAS  Google Scholar 

  27. Wu SM, Wang H, Li L, Guo MX, Qi ZC, Zhang QY, Zhou YM (2020) Intercalated MXene-based layered composites: preparation and application. Chin Chem Lett 31:961–968. https://doi.org/10.1016/j.cclet.2020.02.046

    Article  CAS  Google Scholar 

  28. Yazdanparast S, Soltanmohammad S, Fash-White A, Tucker GJ, Brennecka GL (2020) Synthesis and surface chemistry of 2D TiVC solid-solution MXenes. ACS Appl Mater Interfaces 12:20129–20137. https://doi.org/10.1021/acsami.0c03181

    Article  CAS  PubMed  Google Scholar 

  29. Hanif S, Dong ZY, John P, Abdussalam A, Hui P, Snizhko D, Halawa MI, Xu GB, Dong SJ (2023) Regenerable sensor based on tris(4,7′-diphenyl-1,10-phenanthroline) ruthenium (II) for anodic and cathodic electrochemiluminescence applications. Bioelectrochemistry 149:108313. https://doi.org/10.1016/j.bioelechem.2022.108313

    Article  CAS  PubMed  Google Scholar 

  30. Xing HH, Xia HY, Fan YC, Xue Y, Peng C, Ren JT, Li J, Wang EK (2021) A solid-state electrochemiluminescence sensor based on novel two-dimensional Ti3C2 MXene. ChemElectroChem 8:1858–1863. https://doi.org/10.1002/celc.202100348

    Article  CAS  Google Scholar 

  31. Zhang J, Zhang XY, Yue WB (2022) Nanoporous nitrogen-doped Ti3C2 nanosheets as efficient electrocatalysts for oxygen reduction. ACS Appl Nano Mater 5:11241–11248. https://doi.org/10.1021/acsanm.2c02365

    Article  CAS  Google Scholar 

  32. Yang XW, Zhang YX, Fu ZM, Lu ZS, Zhang XL, Wang Y, Yang ZX, Wu RQ (2020) Tailoring the electronic structure of transition metals by the V2C MXene support: excellent oxygen reduction performance triggered by metal-support interactions. ACS Appl Mater Interfaces 12:28206–28216. https://doi.org/10.1021/acsami.0c06174

    Article  CAS  PubMed  Google Scholar 

  33. Li XL, Li M, Yang Q, Wang DH, Ma LT, Liang GJ, Huang ZD, Dong BB, Huang Q, Zhi CY (2020) Vertically aligned Sn4+ preintercalated Ti2CTX MXene sphere with enhanced Zn ion transportation and superior cycle lifespan. Adv Energy Mater 10:2001394. https://doi.org/10.1002/aenm.202001394

    Article  CAS  Google Scholar 

  34. Sun DD, Hu QK, Chen JF, Zhang XY, Wang LB, Wu QH, Zhou AG (2016) Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O groups during lithiation: a first-principles investigation. ACS Appl Mater Interfaces 8:74–81. https://doi.org/10.1021/acsami.5b03863

    Article  CAS  PubMed  Google Scholar 

  35. Wu M, Wang BX, Hu QK, Wang LB, Zhou AG (2018) The synthesis process and thermal stability of V2C MXene. Materials 11:2112. https://doi.org/10.3390/ma11112112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao X, Wang X, Sun MY, Guo JN, Zhou HW, Wu MX (2022) Design of a specific two-dimensional layered V2C counter electrode for highly effective and stable rigid and flexible quasi-solid-state dye-sensitized solar cells. Electrochim Acta 427:140842. https://doi.org/10.1016/j.electacta.2022.140842

    Article  CAS  Google Scholar 

  37. Li YX, Zhang JP, Cheng Y, Feng KY, Li J, Yang LY, Yin SG (2022) Stable TiVCTx/poly-o-phenylenediamine composites with three-dimensional tremella-like architecture for supercapacitor and Li-ion battery applications. Chem Eng J 433:134578. https://doi.org/10.1016/j.cej.2022.134578

    Article  CAS  Google Scholar 

  38. Zhang JP, Li YX, Xu CY, Li J, Yang LY, Yin SG (2022) 2D/2D/1D structure of a self-supporting electrocatalyst for efficient hydrogen evolution. ACS Appl Energy Mater 5:1710–1719. https://doi.org/10.1021/acsaem.1c03154

    Article  CAS  Google Scholar 

  39. Choi JP, Bard AJ (2005) Electrogenerated chemiluminescence (ECL) 79. Reductive-oxidation ECL of tris(2,2-bipyridine)ruthenium(II) using hydrogen peroxide as a coreactant in pH 7.5 phosphate buffer solution. Anal Chim Acta 541:143–150. https://doi.org/10.1016/j.aca.2004.11.075

    Article  CAS  Google Scholar 

  40. Raju CV, Kumar SS (2017) Highly sensitive novel cathodic electrochemiluminescence of tris(2,2’-bipyridine)ruthenium(II) using glutathione as a co-reactant. Chem Commun 53:6593–6596. https://doi.org/10.1039/C7CC03349D

    Article  Google Scholar 

  41. Fang YF, Yang XC, Chen T, Xu GF, Liu ML, Liu JQ, Xu YH (2018) Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine. Sens Actuat B Chem 263:400–407. https://doi.org/10.1016/j.snb.2018.02.102

    Article  CAS  Google Scholar 

  42. Chen J, Li YF, Zhong J, Lu ZW, Wang GT, Sun MM, Jiang YY, Zou P, Wang XX, Zhao QB, Wang YY, Rao HB (2020) Molecularly imprinted electrochemical sensor based on biomass carbon decorated with MOF-derived Cr2O3 and silver nanoparticles for selective and sensitive detection of nitrofurazone. Chem Eng J 398:125664. https://doi.org/10.1016/j.cej.2020.125664

    Article  CAS  Google Scholar 

  43. Kong N, Lv K, Chen WT, Guan J, Zhao PF, Tao JL, Zhang JZ (2022) Natural polymer template for low-cost producing high-performance Ti3C2Tx MXene electrodes for flexible supercapacitors. ACS Appl Mater Interfaces 14:56877–56885. https://doi.org/10.1021/acsami.2c18559

    Article  CAS  PubMed  Google Scholar 

  44. Wei YP, Chen JS, Liu XP, Mao CJ, Jin BK (2022) ORAOV 1 detection made with metal organic frameworks based on Ti3C2Tx MXene. ACS Appl Mater Interfaces 14:23726–23733. https://doi.org/10.1021/acsami.2c00497

    Article  CAS  Google Scholar 

  45. Liu XB, Bai LW, Cao XW, Wu F, Yin T, Lu WB. Rapid determination of SARS-CoV-2 nucleocapsid proteins based on 2D/2D MXene/P-BiOCl/Ru(bpy)32+ heterojunction composites to enhance electrochemiluminescence performance. Anal Chim Acta 1234:340522. https://doi.org/10.1016/j.aca.2022.340522

  46. Wang SJ, Zhu S, Kang ZQ, Wang XX, Deng ZX, Hu K, Hu JJ, Liu XC, Wang GX, Zang GC, Zhang YC (2023) Particle size-controlled oxygen reduction and evolution reaction nanocatalysts regulate Ru(bpy)32+’s dual-potential electrochemiluminescence for sandwich immunoassay. Research 6:0117. https://doi.org/10.34133/research.0117

  47. Cao SP, Luo QX, Li YJ, Liang RP, Qiu JD (2020) Gold nanoparticles decorated carbon nitride nanosheets as a coreactant regulate the conversion of the dual-potential electrochemiluminescence of Ru(bpy)32+ for Hg2+ detection. Chem Commun 56:5625–5628. https://doi.org/10.1039/D0CC01311K

    Article  CAS  Google Scholar 

  48. Kalyanasundaram K (1982) Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord Chem Rev 46:159–244. https://doi.org/10.1016/0010-8545(82)85003-0

    Article  CAS  Google Scholar 

  49. Hercules DM, Lytle FE (1966) Chemiluminescence from reduction reactions. J Am Chem Soc 88:4745–4746. https://doi.org/10.1021/ja00972a052

    Article  CAS  Google Scholar 

  50. Kalimuthu P, Tkac J, Kappler U, Davis JJ, Bernhardt PV (2010) Highly sensitive and stable electrochemical sulfite biosensor incorporating a bacterial sulfite dehydrogenase. Anal Chem 82:7374–7379. https://doi.org/10.1021/ac101493y

    Article  CAS  PubMed  Google Scholar 

  51. Sowmya P, Prakash S, Joseph A (2023) A bis-chalcone based colorimetric probe for the selective detection of bisulfite/sulfite anions: exploring surfactant promoted Michael addition of anions to a, b-unsaturated ketones. RSC Adv 13:2552–3560. https://doi.org/10.1039/D2RA06832J

    Article  Google Scholar 

  52. Wang FL, Zhao YG, Muhammad N, Wu SC, Zhu Y (2017) Simultaneous determination of parabens and inorganic anions in cosmetics by a two-dimensional ultrahigh-performance liquid chromatography-ion chromatography valve-switching method. RSC Adv 7:32769–32776. https://doi.org/10.1039/C7RA00867H

    Article  CAS  Google Scholar 

  53. Xu BY, Zhou HB, Mei QS, Tang W, Sun YL, Gao MP, Zhang CL, Deng SS, Zhang Y (2018) Real-time visualization of cysteine metabolism in living cells with ratiometric fluorescence probes. Anal Chem 90:2686–2691. https://doi.org/10.1021/acs.analchem.7b04493

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is financially sponsored by National Natural Science Foundation of China (No.21575002), Natural Science Research Project of Anhui Province Education Department (2023AH051116), Natural Science Foundation of Anhui Province (No.2108085MB66).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongping Dong or Mingfu Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 253 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Wang, X., Dong, Y. et al. Promoting effect of TiVC MXene on cathodic electrogenerated chemiluminescence of Ru(bpy)32+ and its application in the sensitive detection of sulfite. Microchim Acta 191, 206 (2024). https://doi.org/10.1007/s00604-024-06290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06290-8

Keywords

Navigation