Skip to main content
Log in

Bi2WO6/TiO2-based visible light-driven photoelectrochemical enzyme biosensor for glucose measurement

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nowadays, the frequent occurrence of food adulteration makes glucose detection particularly important in food safety and quality management. The quality and taste of honey are closely related to the glucose content. However, due to the drawbacks of expensive equipment, complex operating procedures, and time-consuming processes, the application scope of traditional glucose detection methods is limited. Hence, this study developed a photoelectric chemical (PEC) sensor, which is composed of a photoactive material of bismuth tungstate (Bi2WO6) with titanium dioxide (TiO2) and glucose oxidase (GOD), for simple and rapid detection of glucose. Notably, the composites’ absorption prominently increased in the visible light region, and the photo-generated electron–hole pairs were efficiently separated by virtue of the unique nanostructure system, thus playing a crucial role in facilitating PEC activity. In the presence of dissolved oxygen, the photocurrent intensity was enhanced by H2O2 generated from glucose under electro-oxidation specifically catalyzed by GOD fixed on the modified electrode. When the working potential was 0.3 V, the changes of photocurrent response indicated that the PEC enzyme biosensor provides a low detection limit (3.8 µM), and a wide linear range (0.008–8 mM). This method has better selectivity in honey samples and broad application prospects in clinical diagnosis for future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Codex Alimentarius Commission (2001) Revised codex standard for honey. Codex STAN 12-1981, Rev. 1 (1987), Rev.2 (2001). https://www.fao.org/3/x4616e/x4616e0b.htm

  2. Zhang X, Gu H, Liu R, Qing X, Nie J (2023) A comprehensive review of the current trends and recent advancements on the authenticity of honey. Food Chemistry: X 19:100850. https://doi.org/10.1016/j.fochx.2023.100850

    Article  CAS  PubMed  Google Scholar 

  3. Qiao Z, Yan Y, Bi S (2022) Three-dimensional DNA structures in situ decorated with metal nanoclusters for dual-mode biosensing of glucose. Sens Actuators, B Chem 352:131073. https://doi.org/10.1016/j.snb.2021.131073

    Article  CAS  Google Scholar 

  4. Wu L, Zhou X, Wan G, Shi S, Wang G (2022) NiFe2O4/CNTs fabricated by atomic layer deposition as highly stable peroxidase mimics for sensitive colorimetric detection of hydrogen peroxide and glucose. Mater Res Bull 147:111637. https://doi.org/10.1016/j.materresbull.2021.111637

    Article  CAS  Google Scholar 

  5. Baytemir G, Gürol İ, Karakuş S, Taşaltın C, Taşaltın N (2022) Nickel phthalocyanine-borophene nanocomposite-based electrodes for non-enzymatic electrochemical detection of glucose. J Mater Sci: Mater Electron 33:16586–16596. https://doi.org/10.1007/s10854-022-08551-9

    Article  CAS  Google Scholar 

  6. Chen L, Miao L, Chen Y, Gao Y, Di J (2021) An enzyme-free photoelectrochemical glucose sensor based on coupling BiVO4 with gold nanoparticles. Mater Sci Semicond Process 125:105632. https://doi.org/10.1016/j.mssp.2020.105632

    Article  CAS  Google Scholar 

  7. Feng Y, Xie H, Zhou B (2022) Progress in hybridization chain reaction-based photoelectrochemical biosensors. Int. J. Electrochem. Sci 17:220641. https://doi.org/10.20964/2022.06.18

    Article  CAS  Google Scholar 

  8. Song W (2022) Abnormal concentration detection method of chemical pollutants based on multisensor fusion. J Sensors 2022:1–10. https://doi.org/10.1155/2022/2936960

    Article  Google Scholar 

  9. Li X, Zhu H, Liu P, Wang M, Pan J, Qiu F, Ni L, Niu X (2021) Realizing selective detection with nanozymes: strategies and trends. TrAC, Trends Anal Chem 143:116379. https://doi.org/10.1016/j.trac.2021.116379

    Article  CAS  Google Scholar 

  10. Jing Y, Chang SJ, Chen C, Liu J (2022) Glucose monitoring sensors: history, principle, and challenges. J Electrochem Soc. https://doi.org/10.1149/1945-7111/ac6980

    Article  Google Scholar 

  11. Chen W, Liu S, Fu Y, Yan H, Qin L, Lai C, Zhang C, Ye H, Chen W, Qin F, Xu F, Huo X, Qin H (2022) Recent advances in photoelectrocatalysis for environmental applications: sensing, pollutants removal and microbial inactivation. Coord Chem Rev 454:214341. https://doi.org/10.1016/j.ccr.2021.214341

    Article  CAS  Google Scholar 

  12. Rao Z, Thukral A, Yang P, Lu Y, Shim H, Wu W, Karim A, Yu C (2022) All-polymer based stretchable rubbery electronics and sensors. Adv Func Mater 32:2111232. https://doi.org/10.1002/adfm.202111232

    Article  CAS  Google Scholar 

  13. Yuan F, Xia Y, Lu Q, Xu Q, Shu Y, Hu X (2022) Recent advances in inorganic functional nanomaterials based flexible electrochemical sensors. Talanta 2022:123419. https://doi.org/10.1016/j.talanta.2022.123419

    Article  CAS  Google Scholar 

  14. Li F, Wang M, Liu S, Zhao Q (2022) Halide-containing organic persistent luminescent materials for environmental sensing applications. Chem Sci 13:2184–2201. https://doi.org/10.1039/D1SC06586F

    Article  CAS  PubMed  Google Scholar 

  15. Liu S, Chen X, Yu M, Li J, Liu J, Xie Z, Gao F, Liu Y (2022) Applications of titanium dioxide nanostructure in stomatology[J]. Molecules 27:3881. https://doi.org/10.3390/molecules27123881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Olea MAU, Bueno JJP, Pérez AXM (2021) Nanometric and surface properties of semiconductors correlated to photocatalysis and photoelectrocatalysis applied to organic pollutants-a review. J Environ Chem Eng 9:106480. https://doi.org/10.1016/j.jece.2021.106480

    Article  CAS  Google Scholar 

  17. Liu W, Duan W, Jia L, Wang S, Guo Y, Zhang G, Zhu B, Huang W, Zhang S (2022) Surface plasmon-enhanced photoelectrochemical sensor based on Au modified TiO2 nanotubes. Nanomaterials 12:2058. https://doi.org/10.3390/nano12122058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sagadevan S, Imteyaz S, Murugan B, Lett JA, Sridewi N, Weldegebrieal GK, Fatimah I, Oh W (2022) A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Process Synth 11:44–63. https://doi.org/10.1515/gps-2022-0005

    Article  CAS  Google Scholar 

  19. Anucha CB, Altin I, Bacaksiz E, Stathopoulos VN (2022) Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: in the light of modification strategies. Chem Eng J Adv 10:100262. https://doi.org/10.1016/j.ceja.2022.100262

    Article  CAS  Google Scholar 

  20. Khaleel OA, Ahmed DS (2022) Interface engineering at electron transport/perovskite layers using wetting mesoporous titanium dioxide to fabricate efficient and stable perovskite solar cells. Int J Energy Res 46:11163–11173. https://doi.org/10.1002/er.7916

    Article  CAS  Google Scholar 

  21. Nam Y, Lim JH, Ko KC, Lee JY (2019) Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect. J Mater Chem A 7:13833–13859. https://doi.org/10.1039/C9TA03385H

    Article  CAS  Google Scholar 

  22. Zhang L, Han Y, Yang J, Deng S, Wang B (2021) Construction and photocatalysis of carbon quantum dots/layered mesoporous titanium dioxide (CQDs/LM-TiO2) composites. Appl Surf Sci 546:149089. https://doi.org/10.1016/j.apsusc.2021.149089

    Article  CAS  Google Scholar 

  23. Xing Z, Hu J, Ma M, Lin H, An Y, Liu Z, Zhang Y, Li J, Yang S (2019) From one to two: in situ construction of an ultrathin 2D–2D closely bonded heterojunction from a single-phase monolayer nanosheet. J Am Chem Soc 141:19715–19727. https://doi.org/10.1021/jacs.9b08651

    Article  CAS  PubMed  Google Scholar 

  24. Wang R, Xu M, Xie J, Ye S, Song X (2020) A spherical TiO2-Bi2WO6 composite photocatalyst for visible-light photocatalytic degradation of ethylene. Colloids Surf, A 602:125048. https://doi.org/10.1016/j.colsurfa.2020.125048

    Article  CAS  Google Scholar 

  25. Chen T, Wei S, Cheng Z, Liu J (2020) Specific detection of monosaccharide by dual-channel sensing platform based on dual catalytic system constructed by bio-enzyme and bionic enzyme using molecular imprinting polymers. Sens Actuators, B Chem 320:128430. https://doi.org/10.1016/j.snb.2020.128430

    Article  CAS  Google Scholar 

  26. Nishitani S, Sakata T (2020) Enhancement of signal-to-noise ratio for serotonin detection with well-designed nanofilter-coated potentiometric electrochemical biosensor. ACS Appl Mater Interfaces 12(13):14761–14769. https://doi.org/10.1021/acsami.9b19309

    Article  CAS  PubMed  Google Scholar 

  27. Mehdizadeh B, Maleknia L, Amirabadi A, Shabani M (2020) Glucose sensing by a glassy carbon electrode modified with glucose oxidase/chitosan/graphene oxide nanofibers. Diam Relat Mater 109:108073. https://doi.org/10.1016/j.diamond.2020.108073

    Article  CAS  Google Scholar 

  28. Li S, Xiong J, Chen C, Chu F, Kong Y, Deng L (2017) Amperometric biosensor based on electrochemically reduced graphene oxide/poly(m-dihydroxybenzene) composites for glucose determination. Mater Technol 32(1):1–6. https://doi.org/10.1080/10667857.2015.1109162

    Article  CAS  Google Scholar 

  29. Wang L, Meng Y, Zhang C, Xiao H, Li Y, Tan Y, Xie Q (2019) Improving photovoltaic and enzymatic sensing performance by coupling a core-shell Au Nanorod@TiO2 heterostructure with the bioinspired L-DOPA polymer. ACS Applied Mater Interfaces 11(9):9394–9404. https://doi.org/10.1021/acsami.8b19284

    Article  CAS  Google Scholar 

  30. Zhao C, Jing T, Tian J, Guo J, Wu M, Shi D, Zhao Z, Guo Z (2022) Visible light-driven photoelectrochemical enzyme biosensor based on reduced graphene oxide/titania for detection of glucose. Journal of Nanostructure in Chemistry 12(2):193–205. https://doi.org/10.1007/s40097-021-00455-0

    Article  CAS  Google Scholar 

  31. Ma J, Zhang M, Su W, Wu B, Yang Z, Wang X, Qiao B, Pei H, Tu J, Chen D, Wu Q (2022) Photoelectrochemical enzyme biosensor based on TiO2 nanorod/TiO2 quantum dot/polydopamine/glucose oxidase composites with strong visible-light response. Langmuir 38(2):751–761. https://doi.org/10.1021/acs.langmuir.1c02741

    Article  CAS  PubMed  Google Scholar 

  32. Wu B, Cheng Z, Hou Y, Chen Q, Wang X, Qiao B, Chen D, Tu J (2022) Engineering exposed vertical nano-TiO2 (001) facets/BiOI nanosheet heterojunction film for constructing a satisfactory PEC glucose oxidase biosensor. RSC Adv 12(30):19495–19504. https://doi.org/10.1039/D2RA03070E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yan B, Zhao X, Chen D, Cao Y, Lv C, Tu J, Wang X, Wu Q (2020) Enhanced photoelectrochemical biosensing performance for Au nanoparticle-polyaniline-TiO2 heterojunction composites. RSC Adv 10:43985–43993. https://doi.org/10.1039/D0RA06890J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The Science and Technology Cooperation Plan Projects of Finance of Xinjiang Production and Construction Corps Finance (2021BC010) and the President’s Fund Project of Tarim University (TDZKCX202105) provided support for this research.

Author information

Authors and Affiliations

Authors

Contributions

Xiaotian Wang: writing—review and editing, methodology, writing—original draft, formal analysis, visualization; Dongliang Li: methodology, validation, formal analysis, investigation, writing—original draft; Weihua Wang: conceptualization, supervision, methodology, funding acquisition, writing—review and editing; Sabira Kozykan: conceptualization, resources, supervision; Zilong Liang: writing—review, investigation; Qiujie Ma: supervision, investigation; Xiaoqin Yu: conceptualization and investigation.

Corresponding author

Correspondence to Weihua Wang.

Ethics declarations

Ethics approval

This research did not involve human or animal samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiaotian Wang and Dongliang Li make equal contributions to the present work, with the first authorship shared.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 357 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, D., Wang, W. et al. Bi2WO6/TiO2-based visible light-driven photoelectrochemical enzyme biosensor for glucose measurement. Microchim Acta 191, 201 (2024). https://doi.org/10.1007/s00604-024-06286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06286-4

Keywords

Navigation