Skip to main content
Log in

Ultrasensitive solid-state electrochemiluminescence sensor based on lotus root shaped carbon fiber, CdSe QDs and Fe3O4 synergically amplify Ru(bpy)32+ luminophore signal for detection of cyfluthrin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An efficient and innovative electrochemiluminescence (ECL) sensor was developed for trace detection of cyfluthrin. The sensor utilized materials such as lotus root shaped carbon fiber (Co CNFs), cadmium selenide quantum dots (CdSe QDs), and Fe3O4 to amplify Ru(bpy)32+ signals. Co CNFs, with its large specific surface area and porosity, served the purpose of not only enhancing the stability of the sensor by fixing CdSe QDs and Ru(bpy)32+ on the Co CNFs/GCE, but also facilitating electron transfer. CdSe QDs was involved in the luminescence reaction and collaborated with Ru(bpy)32+ to enhance the sensor's sensitivity, while Fe3O4 promoted electron transfer in the system due to its large surface area. The solid-state ECL sensor achieved satisfactory signal under the synergistic action of these components. The ECL signal of the sensor was quenched by cyfluthrin, and a favorable linear relationship was observed between the sensor and cyfluthrin in the concentration range 1 × 10–12 to 1 × 10–6 M. The detection limit of the sensor was 3.3 × 10–13 M (S/N = 3). The utilization of lotus root shaped carbon fiber, CdSe QDs, and Fe3O4 in the Ru(bpy)32+ system demonstrated a synergistic effect for cyfluthrin detection, presenting a new approach for the rapid determination analysis of pesticide residues in foods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data of this article involves personal privacy and cannot be shared publicly.

References

  1. Shayan-Nasr M, Ghaniei A, Eslami M, Zadeh-Hashem E (2021) Ameliorative role of trans-ferulic acid on induced oxidative toxicity of rooster semen by β-cyfluthrin during low temperature liquid storage. Poultry SCI 100:101308. https://doi.org/10.1016/j.psj.2021.101308

    Article  CAS  Google Scholar 

  2. Rodríguez JL, Ares I, Castellano V, Martínez M, Martínez Larrañaga MR, Anadón A, Martínez MA (2016) 5-HT loss in rat brain induced by cyfluthrin. Toxicol Lett 258:S288–S289. https://doi.org/10.1016/j.toxlet.2016.06.2004

    Article  Google Scholar 

  3. Qin TY, Zhao XF, Song C, Lv TYZ, Chen SH, Xun ZQ, Xu ZY, Zhang ZX, Xu HH, Zhao C, Liu B, Peng XJ (2016) A ratiometric supramolecular fluorescent probe for on-site determination of cyfluthrin in real food samples. Chem Eng J 451:139022. https://doi.org/10.1016/j.cej.2022.139022

    Article  CAS  Google Scholar 

  4. Vuthijumnonk JT, Shimbhanao W (2019) Removal of cyfluthrin by fine bubble technology in oranges (Citrus reticulata Blanco). IOP Conf Ser Earth Environ Sci 346:012036. https://doi.org/10.1088/1755-1315/346/1/012036

    Article  Google Scholar 

  5. Ren DX, Sun CJ, Ma GQ, Yang DN, Zhou C, Xie JY, Li YX (2018) Determination of pyrethroids in tea brew by GC-MS combined with SPME with multiwalled carbon nanotube coated fiber. Int J Anal Chemi 2018:8426598. https://doi.org/10.1155/2018/8426598

    Article  CAS  Google Scholar 

  6. Lai W, Shi YY, Zhong JB, Zhou XY, Yang Y, Chen ZY, Zhang CS (2023) A dry chemistry-based electrochemiluminescence device for point-of-care testing of alanine transaminase. Talanta 256:124287. https://doi.org/10.1016/j.talanta.2023.124287

    Article  CAS  PubMed  Google Scholar 

  7. Zhang WY, Chen LL, Yang K, Wang LJ, Han BQ, Sun SG, Wen J (2023) An electrochemiluminescence immunosensor based on functionalized metal organic layers as emitters for sensitive detection of carcinoembryonic antigen. Sensor Actuat B-Chem 393:134317. https://doi.org/10.1016/j.snb.2023.134317

    Article  CAS  Google Scholar 

  8. Wang L, Shi XH, Zhang YF, Liu AA, Liu SL, Wang ZG, Pang DW (2020) CdZnSeS quantum dots condensed with ordered mesoporous carbon for high-sensitive electrochemiluminescence detection of hydrogen peroxide in live cells. Electrochim Acta 362:137107. https://doi.org/10.1016/j.electacta.2020.137107

    Article  CAS  Google Scholar 

  9. Chen J, Cheng GB, Wu K, Deng AP, Li JG (2020) Sensitive and specific detection of ractopamine: An electrochemiluminescence immunosensing strategy fabricated by trimetallic Au@Pd@Pt nanoparticles and triangular gold nanosheets. Electrochim Acta 361:137061. https://doi.org/10.1016/j.electacta.2020.137061

    Article  CAS  Google Scholar 

  10. Lu J, Wang Y, Shan XY, Sun Z, Zhang X, Zhao YJ, Hu Y, Sun EJ, Tian L (2021) Synergistic enhancement effects of cobalt oxide doped silver oxide and porphyrin zinc on an electrochemiluminescence sensor for detection of glucose. Microchem J 170:106716. https://doi.org/10.1016/j.microc.2021.106716

    Article  CAS  Google Scholar 

  11. Gao XQ, Gu XW, Min Q, Wei YY, Tian CY, Zhuang XM, Luan F (2021) Encapsulating Ru(bpy)32+ in an infinite coordination polymer network: Towards a solid-state electrochemiluminescence sensing platform for histamine to evaluate fish product quality. Food Chem 368:130852. https://doi.org/10.1016/j.foodchem.2021.130852

    Article  CAS  PubMed  Google Scholar 

  12. Arab N, Fotouhi L, Salis A (2021) Electrosynthesised CdS@ZnS quantum dots decorated multi walled carbon nanotubes for analysis of propranolol in biological fluids and pharmaceutical samples. Microchem J 168:106453. https://doi.org/10.1016/j.microc.2021.106453

    Article  CAS  Google Scholar 

  13. Ding SN, Jin Y, Chen X, Bao N (2015) Tunable electrochemiluminescence of CdSe@ZnSe quantum dots by adjusting ZnSe shell thickness. Electrochem Commun 55:30–33. https://doi.org/10.1016/j.elecom.2015.03.011

    Article  CAS  Google Scholar 

  14. Sharma V, Singh P, Kumar A, Gupta N (2023) Electrochemical detection of dopamine by using nickel supported carbon nanofibers modified screen printed electrode. Diam Relat Mater 133:109677. https://doi.org/10.1016/j.diamond.2023.109677

    Article  CAS  Google Scholar 

  15. Xin Y, Nie SQ, Pan S, Miao C, Mou HY, Wen MY, Xiao W (2022) Electrospinning fabrication of Sb-SnSb/TiO2@CNFs composite nanofibersas high-performance anodes for lithium-ion batteries. J Colloid Interf SCI 630:403–414. https://doi.org/10.1016/j.jcis.2022.10.112

    Article  CAS  Google Scholar 

  16. Zhang XW, Lan MY, Wang F, Yi XH, Wang CC (2022) ZIF-67-based catalysts in persulfate advanced oxidation processes (PS-AOPs) for water remediation. J Environ Chem Eng 10:107997. https://doi.org/10.1016/j.jece.2022.107997

    Article  CAS  Google Scholar 

  17. Ma Q, Zhang Q, Chu SS, Guo J, Li H, Lin ZQ (2021) ZIF-67-induced double-tubular 1D CeO2/Co3O4 heterostructures allowing electron transfer synergetic mechanism for enhanced photocatalytic performance. Mater Lett 289:129391. https://doi.org/10.1016/j.matlet.2021.129391

    Article  CAS  Google Scholar 

  18. Wu Y, Xu GL, Zhang WL, Song C, Wang LJ, Fang XY, Xu LJ, Han SG, Cui JQ, Gan L (2021) Construction of ZIF@electrospun cellulose nanofiber derived N doped metallic cobalt embedded carbon nanofiber composite as binder-free supercapacitance electrode. Carbohyd Polym 267:118166. https://doi.org/10.1016/j.carbpol.2021.118166

    Article  CAS  Google Scholar 

  19. Feng T, Song XZ, Wang W, Xu K, Wang SF, Zhang N, Li YY, Ma HM, Wei Q (2022) High-bioactivity microfluidic immunosensing platform for electrochemiluminescence determination of CYFRA 21–1 with the Introduction of Fe3O4@Cu@Cu2O. Microchim Acta 189:336. https://doi.org/10.1007/s00604-022-05436-w

    Article  CAS  Google Scholar 

  20. Butmee P, Tumcharern G, Thouand G, Kalcher K, Samphao A (2020) An ultrasensitive immunosensor based on manganese dioxide-graphene nanoplatelets and core shell Fe3O4@Au nanoparticles for label-free detection of carcinoembryonic antigen. Bioelectrochemistry 132:107452. https://doi.org/10.1016/j.bioelechem.2019.107452

    Article  CAS  PubMed  Google Scholar 

  21. Cai QQ, Wu D, Li HK, Jie GF, Zhou H (2021) Versatile photoelectrochemical and electrochemiluminescence biosensor based on 3D CdSe QDs-DNA nanonetwork-SnO2 nanoflower coupled with DNA walker amplification for HIV detection. Biosens Bioelectron 191:113455. https://doi.org/10.1016/j.bios.2021.113455

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Zhang YY, Zhao WW, Xu JJ, Chen HY (2013) Enhanced anodic electrochemiluminescence from Co2+-doped CdSe nanocrystals for alkaline phosphatase assay. Electroanal 25:951–958. https://doi.org/10.1002/elan.201200558

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by Jilin Education Foundation (JJKH20230905KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Lu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 86 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, X., Lu, J., Li, C. et al. Ultrasensitive solid-state electrochemiluminescence sensor based on lotus root shaped carbon fiber, CdSe QDs and Fe3O4 synergically amplify Ru(bpy)32+ luminophore signal for detection of cyfluthrin. Microchim Acta 191, 215 (2024). https://doi.org/10.1007/s00604-024-06283-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06283-7

Keywords

Navigation