Skip to main content
Log in

Highly efficient photoelectrochemical aptasensor based on CdS/CdTe QDs co-sensitized TiO2 nanoparticles designed for thrombin detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A photoelectrochemical (PEC) sensor for the sensitive detection of thrombin (TB) was established. Co-sensitized combination of TiO2 nanoparticles combined with modified cadmium sulfide and cadmium telluride quantum dots (CdS/CdTe QDs) was utilized as a photoactive material. Successful growth of CdS/CdTe quantum dots on mesoporous TiO2 films occured by successive ion-layer adsorption and reaction. This interesting formation of co-sensitive structure is conducive to enhancing the photocurrent response by improving the use rate of light energy. Additionally, the step-level structure of CdS/CdTe QDs and TiO2 NPs shows a wide range of visible light absorption, facilitating the dissociation of excitons into free electrons and holes. Consequently, the photoelectric response of the PEC analysis platform is significantly enhanced. This constructed PEC aptasensor shows good detection of thrombin with a low detection limit (0.033 pM) and a wide linear range (0.0001–100 nM) in diluted actual human serum samples. In addition, this PEC aptasensor also has the characteristics of good stability and good reproducibility, which provides a novel insight for the quantitative measurement of other similar analytes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data are available from the corresponding author upon reasonable request.

References 

  1. Zhang Y, Ranaei Pirmardan E, Barakat A, Hafezi-Moghadam A (2023) Breath biopsy reveals systemic immunothrombosis and its resolution through bioorthogonal dendritic nanoprobes. Adv Mater 35(45):2304903. https://doi.org/10.1002/adma.202304903

  2. Wang Z, Zhao Y, Hou Y et al (2023) A thrombin-activated peptide-templated nanozyme for remedying ischemic stroke via thrombolytic and neuroprotective actions. Adv Mater 36(10):2210144. https://doi.org/10.1002/adma.202210144

  3. Fang Y, Wang H-M, Gu Y-X et al (2020) Highly enhanced electrochemiluminescence luminophore generated by zeolitic imidazole framework-8-linked porphyrin and its application for thrombin detection. Anal. Chem. 92(4):3206–3212. https://doi.org/10.1021/acs.analchem.9b04938

    Article  CAS  PubMed  Google Scholar 

  4. Sun Y, Zhu X, Liu H et al (2020) Novel chemiluminescence sensor for thrombin detection based on dual-aptamer biorecognition and mesoporous silica encapsulated with iron porphyrin. ACS Appl. Mater . Interfaces 12(5):5569–5577. https://doi.org/10.1021/acsami.9b20255

    Article  CAS  PubMed  Google Scholar 

  5. Marar TT, Matzko CN, Wu J et al (2022) Thrombin spatial distribution determines protein C activation during hemostasis and thrombosis. Blood 139(12):1892–1902. https://doi.org/10.1182/blood.2021014338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang P, Guo X, Zhang J et al (2022) Picomolar thrombin detection by orchestration of triple signal amplification strategy with hierarchically porous Ti3C2Tx MXene electrode material-catalytic hairpin assembly reaction-metallic nanoprobes. Biosens Bioelectron 208:114228. https://doi.org/10.1016/j.bios.2022.114228

  7. Zhang Q, Liu Q, Liu Y et al (2023) PEC thrombin aptasensor based on Ag-Ag2S decorated hematite photoanode with signal-down effect of precipitation catalyzed by G-quadruplexes/hemin. Biosens Bioelectron 232:115321. https://doi.org/10.1016/j.bios.2023.115321

  8. Girish A, Jolly K, Alsaadi N et al (2022) Platelet-inspired intravenous nanomedicine for injury-targeted direct delivery of thrombin to augment hemostasis in coagulopathies. ACS Nano 16(10):16292–16313. https://doi.org/10.1021/acsnano.2c05306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deng X, Wu S, Li Z, Zhao Y, Duan C (2020) Ratiometric detection of DNA and protein in serum by a universal tripyridinyl Ru(II) complexencapsulated SiO2@polydopamine fluorescence nanoplatform. Anal Chem 92(24):15908–15915. https://doi.org/10.1021/acs.analchem.0c03306

    Article  CAS  PubMed  Google Scholar 

  10. Dong J, Willner I (2023) Transient transcription machineries modulate dynamic functions of g-quadruplexes: temporal regulation of biocatalytic circuits, gene replication and transcription. Angew Chem Int Ed Engl 62(33): e202307898. https://doi.org/10.1002/anie.202307898

  11. Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D (2021) G-quadruplex based aptamers targeting human thrombin: discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 217:107649. https://doi.org/10.1016/j.pharmthera.2020.107649

  12. Fan X, Ouyang X, Zhou Z et al (2023) A highly selective self-powered sensor based on the upconversion nanoparticles/CdS nanospheres for chlorpyrifos detection. Biosens Bioelectron 237:115475. https://doi.org/10.1016/j.bios.2023.115475

  13. Deng Y, He R, Lu H et al (2023) Visible-light driven and efficient photoelectrochemical aptasensor constructed with N-doped carbon quantum dots-decorated TiO2 nanorods for determination of di-2-ethylhexyl phthalate. Chem Eng J 468:143583. https://doi.org/10.1016/j.cej.2023.143583

  14. Li H, Sheng W, Haruna S A et al (2023) Recent progress in photoelectrochemical sensors to quantify pesticides in foods: theory, photoactive substrate selection, recognition elements and applications. Trends Analyt Chem 164:117108. https://doi.org/10.1016/j.trac.2023.117108

  15. Zhu J-H, Mei L-P, Wang A-J, Song Y-Y, Feng J-J (2023) Integration of phosphate functionalized Pt/TiO2 and Ru(bpy)32+ sensitization for ultrasensitive assay of adenosine deaminase activity on a novel split-typed PEC aptasensor. Biosens Bioelectron 226:115141. https://doi.org/10.1016/j.bios.2023.115141

  16. Liang X, Zhao J, Ma Z (2020) Improved binding induced self-assembled DNA to achieve ultrasensitive electrochemical proximity assay. Sens Actuators B Chem 304:127278. https://doi.org/10.1016/j.snb.2019.127278

  17. Liu B, Ge Y, Lu Y et al (2023) An NIR light-responsive “on-off-on” photoelectrochemical aptasensor for carcinoembryonic antigen assay based on Y-shaped DNA. Biosens Bioelectron 229:115241. https://doi.org/10.1016/j.bios.2023.115241

  18. Hu R, Ren X X, Song P et al (2023) Hollow cage-like PtCu nanozyme-regulated photo-activity of porous CdIn2S4/SnO2 heterojunctions for ultrasensitive PEC sensing of streptomycin. Biosens Bioelectron 236:115425. https://doi.org/10.1016/j.bios.2023.115425

  19. Ghosh Dastidar M, Schumann U, Lu T et al (2023) A simple yet highly sensitive and selective aptasensor architecture for rapid and portable miRNA detection. Chem Eng J 454:140186. https://doi.org/10.1016/j.cej.2022.140186

  20. Alkhamis O, Canoura J, Willis C et al (2023) Comparison of aptamer signaling mechanisms reveals disparities in sensor response and strategies to eliminate false signals. J Am Chem Soc 145(22):12407–12422. https://doi.org/10.1021/jacs.3c03640

  21. Zheng L, Guo Q, Yang C et al (2023) Electrochemiluminescence and photoelectrochemistry dual-signal immunosensor based on Ru(bpy)32+ functionalized MOF for prostate-specific antigen sensitive detection. Sens Actuators B Chem 379:133269. https://doi.org/10.1016/j.snb.2022.133269

  22. Wang K, Yang J, Yang X, Guo Q, Nie G (2022) Photoelectrochemical nanoprobe for combined monitoring of Cu2+and β-amyloid peptide. Microchem J 182:107952. https://doi.org/10.1016/j.microc.2022.107952

  23. Guo Y, Dai X, Zhang Y et al (2023) Universal hydrogen-treated TiO2 nanorod array/Ti2COX MXene PEC aptamer sensor modulated by the transport characteristic of photogenerated holes. Anal Chem 95(19):7560–7568. https://doi.org/10.1021/acs.analchem.3c00046

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Wu G, Chen Y et al (2023) Enhancing charge separation/transfer based on Co(II) doped tubular g-C3N4 for photoelectrochemical atrazine aptasensing. J Environ Chem Eng 11(3):110173. https://doi.org/10.1016/j.jece.2023.110173

    Article  CAS  Google Scholar 

  25. Abdelkarim O, Mirzaei A, Selopal G S et al (2022) Constructing quantum dots sensitized TiO2 nanotube P-N heterojunction for photoelectrochemical hydrogen generation. Chem Eng J 446:137312. https://doi.org/10.1016/j.cej.2022.137312

  26. Liu J, Luo Z, Mao X et al (2022) Recent advances in self-supported semiconductor heterojunction nanoarrays as efficient photoanodes for photoelectrochemical water splitting. Small 18(48):e2204553. https://doi.org/10.1002/smll.202204553

    Article  CAS  PubMed  Google Scholar 

  27. Boochakiat S, Inceesungvorn B, Nattestad A, Chen J (2023) Bismuth‐based oxide photocatalysts for selective oxidation transformations of organic compounds. Chem Nano Mat 9(7):e202300140. https://doi.org/10.1002/cnma.202300140

  28. Tantraviwat D, Nattestad A, Chen J, Inceesungvorn B (2023) Enhanced photoactivity and selectivity over BiOI-decorated Bi2WO6 microflower for selective oxidation of benzylamine: Role of BiOI and mechanism. J Colloid Interf Sci 629(Pt A):854–863. https://doi.org/10.1016/j.jcis.2022.09.020

  29. Hu Z, Zhou M, Maitlo H A et al (2023) Novel dual-photoelectrode photoelectrocatalytic system based on TiO2 nanoneedle arrays photoanode and nitrogen-doped carbon dots/Co3O4 photocathode for efficient water purification at low/no applied voltage. Appl Catal B 331:122676. https://doi.org/10.1016/j.apcatb

  30. Wu J, Tao Y, Zhang C et al (2023) Activation of chloride by oxygen vacancies-enriched TiO2 photoanode for efficient photoelectrochemical treatment of persistent organic pollutants and simultaneous H2 generation. J Hazard Mater 443(Pt B):130363. https://doi.org/10.1016/j.jhazmat.2022.130363

  31. .Amani Ghadim A R, Mousavi M, Bayat F (2022) Dysprosium doping in CdTe@CdS type II core/shell and cosensitizing with CdSe for photocurrent and efficiency enhancement in quantum dot sensitized solar cells. J Power Sources 539:231624. https://doi.org/10.1016/j.jpowsour.2022.231624

  32. Jian J-X, Xie L-H, Mumtaz A et al (2023) Interface-engineered Ni-coated CdTe heterojunction photocathode for enhanced photoelectrochemical hydrogen evolution. ACS Appl Mater Interfaces 15(17):21057–21065. https://doi.org/10.1021/acsami.3c01476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cai J, Sheng P, Zhou L et al (2013) Label-free photoelectrochemical immunosensor based on CdTe/CdS co-sensitized TiO2 nanotube array structure for octachlorostyrene detection. Biosens Bioelectron 50:66–71. https://doi.org/10.1016/j.bios.2013.05.040

  34. Chen X, Shen X, Shen S, Reese MO, Hu S (2020) Stable CdTe photoanodes with energetics matching those of a coating intermediate band. ACS Energy Lett. 5(6):1865–1871. https://doi.org/10.1021/acsenergylett.0c00603

    Article  CAS  Google Scholar 

  35. Fan G-C, Han L, Zhu H, Zhang J-R, Zhu J-J (2014) Ultrasensitive photoelectrochemical immunoassay for matrix metalloproteinase-2 detection based on CdS:Mn/CdTe cosensitized TiO2 nanotubes and signal amplification of SiO2@Ab2 conjugates. Anal. Chem. 86(24):12398–12405. https://doi.org/10.1021/ac504027d

    Article  CAS  PubMed  Google Scholar 

  36. Du D, Wang L, Ding D et al (2023) One-step synthesis of aqueous CdTe/CdSe composite QDs toward efficiency enhancement of solar cell. Chem Eng J 461:142040. https://doi.org/10.1016/j.cej.2023.142040

  37. Wang J, Wang L, Su X, Chen R (2022) Bandgap engineering of CdTe/CdSe rod-shaped core/shell and CdTeSe ellipsoidal alloy quantum dots with tunable and intense emission. J Alloys Compd 920:165907. https://doi.org/10.1016/j.jallcom.2022.165907

  38. Ghazzal M N, Wojcieszak R, Raj G, Gaigneaux EM (2014) Study of mesoporous CdS-quantum-dot-sensitized TiO2 films by using X-ray photoelectron spectroscopy and AFM. Beilstein J Nanotechnol 5:68–76. https://doi.org/10.3762/bjnano.5.6

  39. Cao H, Liu F, Tai Y et al (2023) Promoting photocatalytic performance of TiO2 nanomaterials by structural and electronic modulation. Chem Eng J 466:143219. https://doi.org/10.1016/j.cej.2023.143219

  40. Lu C, Drichel A, Chen J et al (2021) Sensibilization of P-NiO with ZnSe/CdS and CdS/ZnSe quantum dots for photoelectrochemical water reduction. Nanoscale 13(2):869–877. https://doi.org/10.1039/d0nr06993k

    Article  CAS  PubMed  Google Scholar 

  41. Zeng G, Zhang J, Li B et al (2015) Effect of deposition temperature on the properties of CdTe thin films prepared by close-spaced sublimation. J Electron Mater 44(8):2786–2791. https://doi.org/10.1007/s11664-015-3739-z

  42. AbuEl-Rub KM, Hahn SR, Tari S, Dissanayake MAKL (2012) Effects of CdCl2 heat treatment on the morphological and chemical properties of CdTe/CdS thin films solar cells. Appl Surf Sci 258(16):6142–6147. https://doi.org/10.1016/j.apsusc.2012.03.020

  43. Yue D, Qian X, Kan M et al (2017) Sulfurated [NiFe]-based layered double hydroxides nanoparticles as efficient co-catalysts for photocatalytic hydrogen evolution using CdTe/CdS quantum dots. Appl Catal B 209:155–160. https://doi.org/10.1016/j.apcatb.2017.02.075

  44. Molaei M, Hasheminejad H, Karimipour M (2015) Synthesizing and investigating photoluminescence properties of CdTe and CdTe@CdS core-shell quantum dots (QDs): a new and simple microwave activated approach for growth of CdS shell around CdTe core. Electron Mater Lett 11(1):7–12. https://doi.org/10.1007/s13391-014-4039-0

    Article  CAS  Google Scholar 

  45. Zhu C, Zhu W, Xu L, Zhou X (2019) A label-free electrochemical aptasensor based on magnetic biocomposites with Pb2+-dependent DNAzyme for the detection of thrombin. Anal Chim Acta 104:721–27. https://doi.org/10.1016/j.aca.2018.09.040

  46. Zhang Q, Liu X, Wang H et al (2021) Photoelectrochemical thrombin biosensor based on perylene-3,4,9,10-tetracarboxylic acid and Au co-functionalized ZnO nanorods with signal-off quenching effect of Ag@Ag2S, Analyst 146(3):855–863. https://doi.org/10.1039/d0an02167a

  47. Yang C, Li Z, Tian Y, Guo Q, Nie G (2020) A simple label-free photoelectrochemical aptasensor for ultrasensitive detection of thrombin. Microchem J 159:105452. https://doi.org/10.1016/j.microc.2020.105452

  48. Paimard G, Gholivand M B, Shamsipur M, Ahmadi E, Shahlaei M (2021) Introduction of a thrombin sensor based on its interaction with dabigatran as an oral direct thrombin inhibitor. Mater Sci Eng C 119:111417. https://doi.org/10.1016/j.msec.

  49. Wang X, Gao F, Gong Y et al (2019) Electrochemical aptasensor based on conductive supramolecular polymer hydrogels for thrombin detection with high selectivity. Talanta 205:120140. https://doi.org/10.1016/j.talanta.2019.120140

  50. Wu H, Xi K, Xiao S et al (2020) Self-assembled perylenetetracarboxylic acid-reduced graphene oxide film for high-sensitive impedimetric determination of thrombin. Surf Coat Technol 402:126491. https://doi.org/10.1016/j.surfcoat.2020.126491

  51. Cui H, Wu W, Xu H et al (2020) A homogeneous strategy of target-triggered catalytic hairpin assembly for thrombin signal amplification. Microchem J 159:105537. https://doi.org/10.1016/j.microc.2020.105537

  52. Li J, Zhou W, Yuan R, Xiang Y (2018) Aptamer proximity recognition-dependent strand translocation for enzyme-free and amplified fluorescent detection of thrombin via catalytic hairpin assembly. Anal Chim Acta 103(8):126–131. https://doi.org/10.1016/j.aca.2018.07.011

  53. Liu Y, Zhu Z, Wang C et al (2019) Responsive surface bioaffinity binding to construct flexible and sensitive electrochemical aptasensors. Analyst 144(6):2130–2137. https://doi.org/10.1039/c8an02313a

    Article  CAS  PubMed  Google Scholar 

  54. Yang X, Lv J, Yang Z, Yuan R, Chai Y (2017) A sensitive electrochemical aptasensor for thrombin detection based on electroactive Co-based metalorganic frameworks with target-triggering NESA strategy. Anal Chem 89(21):11636–11640. https://doi.org/10.1021/acs.analchem.7b03056

    Article  CAS  PubMed  Google Scholar 

  55. Grieshaber D, MacKenzie R, Vӧrӧs J, Reimhult E (2008) Electrochemical biosensors-sensor principles and architectures. Sensors 8(3):1400–1458. https://doi.org/10.3390/s80314000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ghanbary E, Asiabani Z, Hosseini N et al (2020) The development of a new modified graphite pencil electrode for quantitative detection of Gibberellic acid (GA3) herbal hormone. Microchem J 157:105005. https://doi.org/10.1016/j.microc

  57. Rostami-Javanroudi S, Babakhanian A (2021) New electrochemical sensor for direct quantification of vitamin K in human blood serum. Microchem J 163:105716. https://doi.org/10.1016/j.microc.2020.105716

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51973102); Natural Science Foundation of Shandong Province (ZR2022MB042; ZR2019MB067); Qinghai Provincial Basic Research Program (2021-ZJ-710); Innovation Ability Improvement Project of Science and Technology Small and Medium-Size Enterprise in Shandong Province (2022TSGC1121); Talent Fund of QUST (2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Nie.

Ethics declarations

Ethics declarations

This research did not involve human or animal samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Lu, Y., Liu, D. et al. Highly efficient photoelectrochemical aptasensor based on CdS/CdTe QDs co-sensitized TiO2 nanoparticles designed for thrombin detection. Microchim Acta 191, 216 (2024). https://doi.org/10.1007/s00604-024-06279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06279-3

Keywords

Navigation