Skip to main content
Log in

Bimetallic FeOx-TiO2@Carbon hybrid structure materials with notable peroxidase enzyme mimics applied to one-step colorimetric detection of glucose

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

FeOx-TiO2@Carbon hybrid structure materials (FeOx-TiO2@CHs) with high peroxidase (POD)-like activity have been prepared by one-pot hydrothermal method. Based on the excellent POD activity of FeOx-TiO2@CHs, one pot colorimetric detection for glucose was constructed by using TMB as substrate with the synergistic reaction of glucose oxidase; the linear range and the limit of detection (LOD) are 25 ~ 1000 and 1.77 µM, respectively. Using this method, the glucose in serum real samples was detected with satisfactory results, and the results are consistent with that of the glucometer method in the hospital. The recovery in diabetic and artificial urine samples was 95.71 ~ 104.67% and 99.01 ~ 103.16%, respectively. The mechanism of the catalytic colorimetric reaction was also investigated by multiple measurements, and the results indicated that superoxide anions (O2•−) between FeOx-TiO2@CHs and substrate play a main role, but a small quantity of hydroxyl radical •OH and singlet oxygen 1O2 is also generated simultaneously. The one-pot reaction method is simple and fast; the detection process only requires a simple mixing, which is suitable for application in special environment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Jeon HJ, Kim HS, Chung E, Lee DY (2022) Nanozyme-based colorimetric biosensor with a systemic quantification algorithm for noninvasive glucose monitoring. Theranostics 12(14):6308–6338. https://doi.org/10.7150/thno.72152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Villena GW, Mobashsher AT, Abbosh A (2019) The progress of glucose monitoring-a review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors 19(4):800. https://doi.org/10.3390/s19040800

    Article  CAS  Google Scholar 

  3. Azkune M, Ruiz-Rubio L, Aldabaldetreku G, Arrospide E, Pérez-Álvarez L, Bikandi I, Zubia J, Vilas-Vilela JL. (2018) U-shaped and surface functionalized polymer optical fiber probe for glucose detection. Sensors 18(1):34. https://doi.org/10.3390/s18010034

  4. Naikoo GA, Salim H, Hassan IU, Awan T, Arshad F, Pedram MZ, Ahmed W, Qurashi A (2021) Recent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for diabetes management- a review. Front Chem 9:748957. https://doi.org/10.3389/fchem.2021.748957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dong Q, Ryu H, Lei Y (2021) Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochim Acta 370:137744. https://doi.org/10.1016/j.electacta.2021.137744

    Article  CAS  Google Scholar 

  6. Sharma AK, Huang WS, Pandey S, Wu HF (2022) NaOH induced oxygen deficiency for fluorescent SrVO3-x perovskite and its application in glucose detection. Sens Actuat B 362:131685. https://doi.org/10.1016/j.snb.2022.131685

    Article  CAS  Google Scholar 

  7. Sun X (2022) Glucose detection through surface-enhanced Raman spectroscopy: a review. Anal Chim Acta 1206:339226. https://doi.org/10.1016/j.aca.2021.339226

    Article  CAS  PubMed  Google Scholar 

  8. Lopez-Cantu DO, González-González RB, Sharma A, Bilal M, Parra-Saldívar R, Iqbal HMN (2022) Bioactive material-based nanozymes with multifunctional attributes for biomedicine: expanding antioxidant therapeutics for neuroprotection, cancer, and anti-inflammatory pathologies. Cordin Chem Rev 469:214685. https://doi.org/10.1016/j.ccr.2022.214685

    Article  CAS  Google Scholar 

  9. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes) next-generation artificial enzymes (II). Chem Soc Rev 48(4):1004–1076. https://doi.org/10.1039/c8cs00457a

    Article  CAS  PubMed  Google Scholar 

  10. Bandi R, Alle M, Park CW, Han SY, Kwon GJ, Kim NH, Kim JC, Lee SH (2021) Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose. Sens Actuat B 330:129330. https://doi.org/10.1016/j.snb.2020.129330

    Article  CAS  Google Scholar 

  11. Jin S, Wu C, Ye Z, Ying Y (2019) Designed inorganic nanomaterials for intrinsic peroxidase mimics: a review. Sens Actuat B 283:18–34. https://doi.org/10.1016/j.snb.2018.10.040

    Article  CAS  Google Scholar 

  12. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  13. Huang X, Nan Z (2020) Porous 2D FeS2 nanosheets as a peroxidase mimic for rapid determination of H2O2. Talanta 216:120995. https://doi.org/10.1016/j.talanta.2020.120995

    Article  CAS  PubMed  Google Scholar 

  14. Zhao Z, Pang J, Liu W, Lin T, Ye F, Zhao S (2019) A bifunctional metal organic framework of type Fe(III)-BTC for cascade (enzymatic and enzyme-mimicking) colorimetric determination of glucose. Microchim Acta 186(5):295. https://doi.org/10.1007/s00604-019-3416-7

    Article  CAS  Google Scholar 

  15. Ortiz-Gómez I, Salinas-Castillo A, García AG, Álvarez-Bermejo JA, de Orbe-Payá I, Rodríguez-Diéguez A, Capitán-Vallvey LF (2017) Microfluidic paper-based device for colorimetric determination of glucose based on a metal-organic framework acting as peroxidase mimetic. Microchim Acta 185(1):47. https://doi.org/10.1007/s00604-017-2575-7

    Article  CAS  Google Scholar 

  16. Eadi SB, Kim S, Jeong SW, Jeon HW (2017) Novel preparation of Fe doped TiO2 nanoparticles and their application for gas sensor and photocatalytic degradation. ADV Mater Sci Eng 2017:2191659. https://doi.org/10.1155/2017/2191659

    Article  CAS  Google Scholar 

  17. Roselin LS, AlYoubi MMM, Mousa SM, El-Komy GM, Patel N, Albeladi NM, Selvin R (2019) Transformation of commercial TiO2 into anatase with improved activity of Fe, Cu and Cu–Fe oxides loaded TiO2. J Nanosci Nanotech 19(2):1098–1104. https://doi.org/10.1166/jnn.2019.15759

    Article  CAS  Google Scholar 

  18. Liu P, Zhao Y, Qin R, Gu L, Zhang P, Fu G, Zheng N (2018) A vicinal effect for promoting catalysis of Pd1/TiO2: supports of atomically dispersed catalysts play more roles than simply serving as ligands. Sci Bull 63(11):675–682. https://doi.org/10.1016/j.scib.2018.03.002

    Article  CAS  Google Scholar 

  19. Hu Z, Li X, Zhang S, Li Q, Fan J, Qu X, Lv K (2020) Fe1/TiO2 Hollow microspheres: Fe and Ti dual active sites boosting the photocatalytic oxidation of NO. Small 16(47):2004583. https://doi.org/10.1002/smll.202004583

    Article  CAS  Google Scholar 

  20. Tejeda-Serrano M, Cabrero-Antonino JR, Mainar-Ruiz V, López-Haro M, Hernández-Garrido JC, Calvino JJ, Leyva-Pérez A, Corma A (2017) Synthesis of supported planar iron oxide nanoparticles and their chemo- and stereoselectivity for hydrogenation of alkynes. ACS Catal 7(5):3721–3729. https://doi.org/10.1021/acscatal.7b00037

    Article  CAS  Google Scholar 

  21. Shen S, Wu L, Liu JJ, Xie M, Shen HJ, Qi XY, Yan YM, Ge YR, Jin Y (2015) Core–shell structured Fe3O4@TiO2-doxorubicin nanoparticles for targeted chemo-sonodynamic therapy of cancer. Int J Pharm 486:380–388. https://doi.org/10.1016/j.ijpharm.2015.03.070

    Article  CAS  PubMed  Google Scholar 

  22. Trenczek-Zajac A, Banas-Gac J, Radecka M (2021) TiO2@Cu2O n-n type heterostructures for photochemistry. Materials 14(13):3725. https://doi.org/10.3390/ma14133725

  23. Li Q, Chen L, Guo C, Liu X, Han D, Wang W (2021) A dual-template defective 3DOMM-TiO2-x for enhanced non-enzymatic electrochemical glucose determination. J Mater Sci 56(4):3414–3429. https://doi.org/10.1007/s10853-020-05470-0

    Article  CAS  Google Scholar 

  24. Janus M, Tryba B, Kusiak E, Tsumura T, Toyoda M, Inagaki M, Morawski AW (2009) TiO2 nanoparticles with high photocatalytic activity under visible light. Catal Lett 128(1):36–39. https://doi.org/10.1007/s10562-008-9721-0

    Article  CAS  Google Scholar 

  25. Luo S, Liu F, Gu S, Chen K, Yang G, Gu Y, Cao J, Qu LL (2022) Nanozyme-mediated signal amplification for ultrasensitive photoelectrochemical sensing of Staphylococcus aureus based on Cu–C3N4–TiO2 heterostructure. Biosens Bioelectron 216:114593. https://doi.org/10.1016/j.bios.2022.114593

    Article  CAS  PubMed  Google Scholar 

  26. Lin L, Xiao Y, Wang Y, Zeng Y, Lin Z, Chen X (2019) Hydrothermal synthesis of nitrogen and copper co-doped carbon dots with intrinsic peroxidase-like activity for colorimetric discrimination of phenylenediamine isomers. Microchim Acta 186(5):288. https://doi.org/10.1007/s00604-019-3404-y

    Article  CAS  Google Scholar 

  27. Durán GM, Benavidez TE, Contento AM, Ríos A, García CD (2017) Analysis of penicillamine using Cu-modified graphene quantum dots synthesized from uric acid as single precursor. J Pharm Anal 7(5):324–331. https://doi.org/10.1016/j.jpha.2017.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  28. Song N, Zhang Y, Ren S, Wang C, Lu X (2022) Rational design of conducting polymer-derived tubular carbon nanoreactors for enhanced enzyme-like catalysis and total antioxidant capacity bioassay application. Anal Chem 94(33):11695–11702. https://doi.org/10.1021/acs.analchem.2c02511

    Article  CAS  PubMed  Google Scholar 

  29. Xu Z, Li L, Li K, Chen ML, Tu J, Chen W, Zhu SH, Cheng YH (2021) Peroxidase-mimetic activity of a nanozyme with uniformly dispersed Fe3O4 NPs supported by mesoporous graphitized carbon for determination of glucose. Microchim Acta 188(12):421. https://doi.org/10.1007/s00604-021-05035-1

    Article  CAS  Google Scholar 

  30. Liang Y, Zhao P, Zheng J, Chen Y, Liu Y, Zheng J, Luo X, Huo D, Hou C (2022) Fe Single-Atom Electrochemical Sensors for H2O2 Produced by living cells. ACS Appl Nano Mat 5(8):11852–11863. https://doi.org/10.1021/acsanm.2c02853

    Article  CAS  Google Scholar 

  31. Yang Z, Min Z, Yu B (2020) Reactive oxygen species and immune regulation. Int Rev Immunol 39(6):292–298. https://doi.org/10.1080/08830185.2020.1768251

    Article  CAS  PubMed  Google Scholar 

  32. Nosaka Y, Nosaka AY (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117(17):11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no. 22064003, 21465007), the Guangxi Natural Science Foundation of China (2015GXNSFGA139003), Bagui Scholar of Guangxi Province, Duxiu Scholar of Guangxi Normal University, and the project of State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University (CMEMR2014-A08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianniao Tian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.09 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Mu, X., Liu, L. et al. Bimetallic FeOx-TiO2@Carbon hybrid structure materials with notable peroxidase enzyme mimics applied to one-step colorimetric detection of glucose. Microchim Acta 191, 192 (2024). https://doi.org/10.1007/s00604-024-06264-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06264-w

Keywords

Navigation