Skip to main content
Log in

Visual and rapid fluorescence sensing for hexavalent chromium by hydroxypropyl chitosan passivated bismuth-based perovskite quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Hydroxypropyl chitosan-Cs3Bi2Cl9 perovskite quantum dots (HPCS-PQDs) were synthesized by a simple ligand-assisted reprecipitation method via green hydroxypropyl chitosan as the ligand and used as the specific signal of a fluorescence probe to achieve the highly sensitive detection of hexavalent chromium (Cr(VI)) and compared with chitosan-Cs3Bi2Cl9 QDs (CS-PQDs). HPCS-PQDs with multiple active hydroxyl passivations were found to enhance the photoluminescence quantum yield (PLQY) by 90%. After being placed in aqueous solution and irradiated with ultraviolet light for 96 h the fluorescence intensity of HPCS-PQDs remained above 60%. The blue emission of HPCS-PQDs has a good selectivity and short response time (30 s) for Cr(VI). A good linear relationship is established between the fluorescence quenching rate of the HPCS-PQDs and concentration of Cr(VI) from 0.8 to 400 µM, with a limit of detection (LOD) of 0.27 µM. The fluorescence quenching mechanism is the static quenching and internal filtration effect caused by HPCS-PQDs forming a non-fluorescent ground-state complex with Cr(VI). The sensor can not only be used to detect Cr(VI) in water samples with high accuracy but can also be prepared as a test paper for the detection for Cr(VI).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Baig U, Rao RAK, Khan AA, Sanagi MM, Gondal MA (2015) Removal of carcinogenic hexavalent chromium from aqueous solutions using newly synthesized and characterized polypyrrole–titanium (IV) phosphate nanocomposite. Chem Eng J 280:494–504. https://doi.org/10.1016/j.cej.2015.06.031

    Article  CAS  Google Scholar 

  2. Pye VI, Patrick R (1983) Ground water contamination in the United States. Science 221(4612):713–718. https://doi.org/10.1126/science.6879171

    Article  CAS  PubMed  Google Scholar 

  3. Bhadra A, Kundu A, Retna Raj C (2021) Surface-engineered mesoporous carbon-based material for the electrochemical detection of hexavalent chromium. J Chem Sci 133:1–7. https://doi.org/10.1007/s12039-021-01979-2

    Article  CAS  Google Scholar 

  4. Hossain MA, Kumita M, Michigami Y, Islam TS, Mori S (2005) Rapid speciation analysis of Cr (VI) and Cr (III) by reversed-phase high-performance liquid chromatography with UV detection. J Chromatogr Sci 43(2):98–103. https://doi.org/10.1093/chromsci/43.2.98

    Article  CAS  PubMed  Google Scholar 

  5. Shanmugam T, Selvaraj J, Mani U (2019) An improved ion chromatographic method for fast and sensitive determination of hexavalent chromium and total chromium using conductivity detection. J Chromatogr Sci 57(10):939–943. https://doi.org/10.1093/chromsci/bmz071

    Article  CAS  Google Scholar 

  6. Bergant M, Ščančar J, Milačič R (2020) Kinetics of interaction of Cr(VI) and Cr(III) with serum constituents and detection of Cr species in human serum at physiological concentration levels. Talanta 218:121199. https://doi.org/10.1016/j.talanta.2020.121199

    Article  CAS  PubMed  Google Scholar 

  7. Wu J, Zheng H, Hou J, Miao L, Zhang F, Zeng RJ, Xing B (2021) In situ prepared algae-supported iron sulfide to remove hexavalent chromium. Environ Pollut 274:115831. https://doi.org/10.1016/j.envpol.2020.115831

    Article  CAS  PubMed  Google Scholar 

  8. Zhan M, Yu H, Li L, Nguyen DT, Chen W (2019) Detection of hexavalent chromium by copper sulfide nanocomposites. Anal Chem 91(3):2058–2065. https://doi.org/10.1021/acs.analchem.8b04501

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Hu J, Yao B, Wei H, Zhang C, Zhou J et al (2023) Bridging environmental and biological monitoring: constructing platform for hexavalent chromium detection and cancer-cells screening based on red fluorescent carbonized polymer dots. Chem Eng J 451:138524. https://doi.org/10.1016/j.cej.2022.138524

    Article  CAS  Google Scholar 

  10. Butkevich AN, Lukinavičius G, D’Este E, Hell SW (2017) Cell-permeant large Stokes shift dyes for transfection-free multicolor nanoscopy. J Am Chem Soc 139(36):12378–12381. https://doi.org/10.1021/jacs.7b06412

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Tang X, Zhu T, Deng M, Ikechukwu IP, Huang W et al (2018) All-inorganic CsPbBr3 perovskite quantum dots as a photoluminescent probe for ultrasensitive Cu2 + detection. J Mater Chem C 6(17):4793–4799. https://doi.org/10.1039/c8tc00249e

    Article  CAS  Google Scholar 

  12. Zhang P, Zhang S, Hu X, Zhang M, You C, Chen G et al (2023) Traffic light-type ratiometric fluorescence visual sensing of Cs+ in soybean oil based on dimension regulation of 2D perovskite nanosheets. Spectrochim Acta Part A Mol Biomol Spectrosc 284:121818. https://doi.org/10.1016/j.saa.2022.121818

    Article  CAS  Google Scholar 

  13. George JK, Ramu S, Halali VV, Balakrishna RG (2021) Inner filter effect as a boon in perovskite sensing systems to achieve higher sensitivity levels. ACS Appl Mater Interfaces 13(48):57264–57273. https://doi.org/10.1021/acsami.1c17061

    Article  CAS  Google Scholar 

  14. Aamir M, Sher M, Malik MA, Akhtar J, Revaprasadu N (2016) A chemodosimetric approach for the selective detection of Pb2+ ions using a cesium based perovskite. New J Chem 40(11):9719–9724. https://doi.org/10.1039/c6nj01783e

    Article  CAS  Google Scholar 

  15. Ding N, Zhou D, Pan G, Xu W, Chen X, Li D et al (2019) Europium-doped lead-free Cs3Bi2Br9 perovskite quantum dots and ultrasensitive Cu2 + detection. ACS Sustain Chem Eng 7(9):8397–8404. https://doi.org/10.1021/acssuschemeng.9b00038

    Article  CAS  Google Scholar 

  16. Gao Y, Chen B (2023) Lead-free Cs 3Bi2Br9 perovskite quantum dots for detection of heavy metal Cu2+ ions in seawater. J Mar Sci Eng 11(5):1001. https://doi.org/10.3390/jmse11051001

    Article  Google Scholar 

  17. Zhang H, Wang X, Liao Q, Xu Z, Li H, Zheng L, Fu H (2017) Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Adv Func Mater 27(7):1604382. https://doi.org/10.1002/adfm.201604382

    Article  CAS  Google Scholar 

  18. Loiudice A, Saris S, Oveisi E, Alexander DT, Buonsanti R (2017) CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew Chem Int Ed 56(36):10696–10701. https://doi.org/10.1002/anie.201703703

    Article  CAS  Google Scholar 

  19. Wang HC, Lin SY, Tang AC, Singh BP, Tong HC, Chen CY et al (2016) Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew Chem Int Ed 55(28):7924–7929. https://doi.org/10.1002/anie.201603698

    Article  CAS  Google Scholar 

  20. Bai S, Yuan Z, Gao F (2016) Colloidal metal halide perovskite nanocrystals: Synthesis, characterization, and applications. J Mater Chem C 4(18):3898–3904. https://doi.org/10.1039/c5tc04116c

    Article  CAS  Google Scholar 

  21. Yang Y, Sun C, Yip HL, Sun R, Wang X (2016) Chitosan-assisted crystallization and film forming of perovskite crystals through biomineralization. Chem-Asian J 11(6):893–899. https://doi.org/10.1002/asia.201501425

    Article  CAS  PubMed  Google Scholar 

  22. He CL, Meng ZQ, Ren SX, Li J, Wang Y, Wu H et al (2023) Water-ultrastable perovskite CsPbBr3 nanocrystals for fluorescence-enhanced cellular imaging. Rare Met 42(5):1624–1634. https://doi.org/10.1007/s12598-022-02222-8

    Article  CAS  Google Scholar 

  23. Vinodhini PA, Sangeetha K, Thandapani G, Sudha PN, Jayachandran V, Sukumaran A (2017) FTIR, XRD and DSC studies of nanochitosan, cellulose acetate and polyethylene glycol blend ultrafiltration membranes. Int J Biol Macromol 104:1721–1729. https://doi.org/10.1016/j.ijbiomac.2017.03.122

    Article  CAS  PubMed  Google Scholar 

  24. Wahid F, Hu XH, Chu LQ, Jia SR, Xie YY, Zhong C (2019) Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. Int J Biol Macromol 122:380–387. https://doi.org/10.1016/j.ijbiomac.2018.10.105

    Article  CAS  PubMed  Google Scholar 

  25. Xie JL, Huang ZQ, Wang B, Chen WJ, Lu WX, Liu X, Song JL (2019) New lead-free perovskite Rb7Bi3Cl16 nanocrystals with blue luminescence and excellent moisture-stability. Nanoscale 11(14):6719–6726. https://doi.org/10.1039/c9nr00600a

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Tu S, You G, Cao J, Wu D, Yao L et al (2022) Enhancing performance and stability of perovskite solar cells through defect passivation with a polyamide derivative obtained from benzoxazine-isocyanide chemistry. Chem Eng J 431:133951. https://doi.org/10.1016/j.cej.2021.133951

    Article  CAS  Google Scholar 

  27. Zhao Y, Xiao A, Wu P, Chen F, Zhang Q, Liang X et al (2021) Fabrication of hydroxypropyl chitosan/soy protein isolate hydrogel for effective hemorrhage control. Tissue Eng Part A 27(11–12):788–795. https://doi.org/10.1089/ten.tea.2020.0174

    Article  CAS  PubMed  Google Scholar 

  28. Lu HT, Lu TW, Chen CH, Mi FL (2019) Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Int J Biol Macromol 128:973–984. https://doi.org/10.1016/j.ijbiomac.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  29. Nakamura Y, Shibayama N, Fujiwara K, Koganezawa T, Miyasaka T (2022) Degradation mechanism of halide perovskite crystals under concurrent light and humidity exposure. ACS Mater Lett 4(12):2409–2414. https://doi.org/10.1021/acsmaterialslett.2c00744

    Article  CAS  Google Scholar 

  30. Shrivastava A, Tandon SA, Kumar R (2015) Water quality management plan for Patalganga River for drinking purpose and human health safety. Int J Sci Res Environ Sci 3(2):0071–0087

    CAS  Google Scholar 

  31. Tang J, Cao X, Qiu G, deMello A, Wang J (2021) Optical-switch-enabled microfluidics for sensitive multichannel colorimetric analysis. Anal Chem 93(17):6784–6791. https://doi.org/10.1021/acs.analchem.1c00674

    Article  CAS  PubMed  Google Scholar 

  32. Truskewycz A, Beker SA, Ball AS, Murdoch B, Cole I (2020) Incorporation of quantum carbon dots into a PVP/ZnO hydrogel for use as an effective hexavalent chromium sensing platform. Anal Chim Acta 1099:126–135. https://doi.org/10.1016/j.aca.2019.11.053

    Article  CAS  PubMed  Google Scholar 

  33. Yao CX, Yang L, Wang J, Lv H, Ji XM, Li SJ et al (2022) A visual and reversible nanoprobe for rapid and on-site determination of hexavalent chromium and lysine based on dual-emission carbon quantum dots coupled with smartphone. Microchim Acta 189(9):354. https://doi.org/10.1007/s00604-022-05370-x

    Article  CAS  Google Scholar 

  34. Menon S, Usha SP, Manoharan H, Kishore PVN, Sai VVR (2023) Metal–organic framework-based fiber optic sensor for chromium (VI) detection. ACS sensors 8(2):684–693. https://doi.org/10.1021/acssensors.2c02170

    Article  CAS  PubMed  Google Scholar 

  35. Hahn M, Jang M, Cho Y, Bae M, Han MY, Piao Y (2024) Fluorometric carbon-dots nanosensor for the detection of hexavalent chromium in water. Opt Mater 147:114642. https://doi.org/10.1016/j.optmat.2023.114642

    Article  CAS  Google Scholar 

  36. Hu X, Zhang Y, Liu H, Zhan M, Chen J, Liu Z, Chen H (2023) Simultaneous detection and decontamination of dichromate ions: The fluorescence response and photocatalysis of thiadiazole-modified Zr-metal–organic frameworks. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.3c05409

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roy S, Bardhan S, Chanda DK, Ghosh S, Mondal D, Roy J, Das S (2020) Development of a Cu (II) doped boehmite based multifunctional sensor for detection and removal of Cr (VI) from wastewater and conversion of Cr (VI) into an energy harvesting source. Dalton Trans 49(20):6607–6615. https://doi.org/10.1039/d0dt00888e

    Article  CAS  PubMed  Google Scholar 

  38. Laddha H, Yadav P, Sharma P, Agarwal M, Gupta R (2024) One arrow two hawk approach for simultaneous detection and photoreduction of toxic hexavalent chromium by N, S-co-doped carbon dots. J Ind Eng Chem 131:257–264. https://doi.org/10.1016/j.jiec.2023.10.025

    Article  CAS  Google Scholar 

  39. Qiu L, Ma Z, Li P, Hu X, Chen C, Zhu X et al (2021) Sensitive and selective detection of chromium (VI) based on two-dimensional luminescence metal organic framework nanosheets via the mechanism integrating chemical oxidation-reduction and inner filter effect. J Hazard Mater 419:126443. https://doi.org/10.1016/j.jhazmat.2021.126443

    Article  CAS  PubMed  Google Scholar 

  40. Chen S, Yu YL, Wang JH (2018) Inner filter effect-based fluorescent sensing systems: a review. Anal Chim Acta 999:13–26. https://doi.org/10.1016/10.1016/j.aca.2017.10.026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the National Natural Science Foundation of China (Program No. 22178210), Innovation Capability Support Program of Shaanxi (Program No. 2021TD -16), Key Project of Natural Science Basic Research Program of Shaanxi Province (Special Support, 2023JC-XJ- 12), Shaanxi Provincial “Special Support Plan for High-level Talents”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dangge Gao, Bin Lyu or Jianzhong Ma.

Ethics declarations

Ethical approval

This study did not involve human or animal subjects, and thus, no ethical approval was required. The study protocol adhered to the guidelines established by the journal.

Conflict of interest

We have consulted the Guide for Authors in preparing our manuscript. No conflict of interest exits in the submission of this manuscript, and manuscript was approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12911 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Zhang, A., Lyu, B. et al. Visual and rapid fluorescence sensing for hexavalent chromium by hydroxypropyl chitosan passivated bismuth-based perovskite quantum dots. Microchim Acta 191, 219 (2024). https://doi.org/10.1007/s00604-024-06251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06251-1

Keywords

Navigation