Skip to main content
Log in

Tailoring plasmonic sensing strategies for the rapid and sensitive detection of hypochlorite in swimming water samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A tunable plasmonic sensor has been developed by varying the dextran content in the initially synthesized dextran-gold nanoparticle (dAuNPs) solution. A colloidal nanogold solution (dAuNPs-Sol) was initially prepared using dextran and gold salt in alkaline media by a one-pot green synthetic route. The dAuNPs-Sol was combined with varying amounts of dextran (ranging from 0.01 to 30.01%) to create a tunable probe, along with different solid formats, including tablet (dAuNPs-Tab), powder (dAuNPs-Powder), and composite (dAuNPs-Comp). Both the liquid and solid phase plasmonic probes were characterized using UV–vis spectroscopy, transmission electron microscopy (TEM) dynamic light scattering (DLS), and zeta potential analysis. The impact of dextran content in the dAuNP solution is studied in terms of surface charge and hydrodynamic size. The influence of operational treatments used to achieve solid dAuNPs probes is also explored. All plasmonic probes were employed to detect a broad range of OCl¯ concentrations (ranging from µM to mM) in water through aggregation followed by calculating a lower and upper limit of detection (LLoD, ULoD) of the proposed colorimetric sensors. Results indicate that the most sensitive detection is achieved with a lower dextran content (0.01%), which exhibits an LLoD of 50 µM. The dAuNPs-Sol sensor is selective and demonstrates real-world applicability, as confirmed by interference analysis and successful testing with various water samples. Additionally, it is found that a 20 × concentration of dextran-coated gold nanoparticles could be attained without any changes in the particle morphology. This concentration is achieved through a straightforward process that does not require the use of a centrifuge machine. This finding highlights the practicality and simplicity of the method, indicating its potential for scalable and cost-effective production of concentrated dAuNPs without compromising their structural integrity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No dataset was used for the research described in the article.

References

  1. U.S. Environmental Protection Agency (2023) List N tool: COVID-19 disinfectants. https://cfpub.epa.gov/wizards/disinfectants. Accessed 28 Feb 2024

  2. Slaughter RJ, Watts M, Vale JA et al (2019) The clinical toxicology of sodium hypochlorite. Clin Toxicol 57:303–311. https://doi.org/10.1080/15563650.2018.1543889

    Article  CAS  Google Scholar 

  3. Santos I, Lucas S, Seixas R, Lino I (2020) Organizing pneumonia after exposure to sodium hypochlorite: a case report. Cureus 12:1–6. https://doi.org/10.7759/cureus.12025

    Article  Google Scholar 

  4. Nemery B, Hoet PHM, Nowak D (2002) Indoor swimming pools, water chlorination and respiratory health. Eur Respir J 19:790–793. https://doi.org/10.1183/09031936.02.00308602

    Article  CAS  PubMed  Google Scholar 

  5. Santini JVM, Barbosa JA, Filho IJZ et al (2017) Use of sodium hypochlorite versus chlorexidine gluconate as an irrigating solution in endodontic treatment: a literature review of the period from 2006 to 2016. Dentistry Adv Res 2017:1–5. https://doi.org/10.29011/2574-7347.100040

    Article  Google Scholar 

  6. Panasenko OM, Sergienko VI (2001) Hypochlorite, oxidative modification of plasma lipoproteins, and atherosclerosis. Bull Exp Biol Med 131:407–415. https://doi.org/10.1023/A:1017926309665

    Article  CAS  PubMed  Google Scholar 

  7. Yap YW, Whiteman M, Cheung NS (2007) Chlorinative stress: an under appreciated mediator of neurodegeneration. Cell Signal 19:219–228. https://doi.org/10.1016/j.cellsig.2006.06.013

    Article  CAS  PubMed  Google Scholar 

  8. Sam CH, Lu HK (2009) The role of hypochlorous acid as one of the reactive oxygen species in periodontal disease. J Dent Sci 4:45–54. https://doi.org/10.1016/S1991-7902(09)60008-8

    Article  Google Scholar 

  9. World Health Organization (2006) Guidelines for safe recreational water environments, volume 2, Swimming pools and similar environments. https://www.who.int/publications/i/item/9241546808. Accessed 15 Nov 2023

  10. World Health Organization (2022) Guidelines for drinking-water quality, 4th edn. https://iris.who.int/bitstream/handle/10665/352532/9789240045064-eng.pdf?sequence=1. Accessed 15 Nov 2023

  11. Majewski S, Bhattacharya T, Asztalos M et al (2019) Sodium hypochlorite body wash in the management of Staphylococcus aureus–colonized moderate-to-severe atopic dermatitis in infants, children, and adolescents. Pediatr Dermatol 36:442–447. https://doi.org/10.1111/pde.13842

    Article  PubMed  PubMed Central  Google Scholar 

  12. Johnson M, Melbourne P (1996) Photolytic spectroscopic quantification of residual chlorine in potable waters. 121:1075–1078. https://doi.org/10.1039/AN9962101075

  13. Girenko DV, Gyrenko AA, Nikolenko NV (2019) Potentiometric determination of chlorate impurities in hypochlorite solutions. Int J Anal Chem 2019:1–7. https://doi.org/10.1155/2019/2360420

    Article  CAS  Google Scholar 

  14. Adam LC, Gordon G (1995) Direct and sequential potentiometric determination of hypochlorite, chlorite, and chlorate ions when hypochlorite ion is present in large excess. Anal Chem 67:535–540. https://doi.org/10.1021/ac00099a009

    Article  CAS  Google Scholar 

  15. Lu L, Zhang J, Yang X (2013) Simple and selective colorimetric detection of hypochlorite based on anti-aggregation of gold nanoparticles. Sens Actuators B Chem 184:189–195. https://doi.org/10.1016/j.snb.2013.04.073

    Article  CAS  Google Scholar 

  16. Ma Y, Zhu Y, Liu B et al (2018) Colorimetric determination of hypochlorite based on the oxidative leaching of gold nanorods. Materials 11:9–14. https://doi.org/10.3390/ma11091629

    Article  CAS  Google Scholar 

  17. Wonjung L, Youn H, Bae J, Kim DH (2021) Solid-phase colorimetric sensor for hypochlorite. Analyst 146:2301–2306. https://doi.org/10.1039/d0an02448a

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Wang X, Yang X (2012) Colorimetric determination of hypochlorite with unmodified gold nanoparticles through the oxidation of a stabilizer thiol compound. Analyst 137:2806–2812. https://doi.org/10.1039/c2an35239g

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Lin X, Lin S et al (2019) Au Nanospheres@Ag nanorods for wide linear range colorimetric determination of hypochlorite. ACS Appl Nano Mater 2:3161–3168. https://doi.org/10.1021/acsanm.9b00475

    Article  CAS  Google Scholar 

  20. Guo Y, Ma Q, Cao F et al (2015) Colorimetric detection of hypochlorite in tap water based on the oxidation of 3,3′,5,5′-tetramethyl benzidine. Anal Methods 7:4055–4058. https://doi.org/10.1039/c5ay00735f

    Article  CAS  Google Scholar 

  21. Walekar LS, Pawar SP, Gore AH et al (2016) Surfactant stabilized AgNPs as a colorimetric probe for simple and selective detection of hypochlorite anion (ClO-) in aqueous solution: environmental sample analysis. Colloids Surf A Physicochem Eng Asp 491:78–85. https://doi.org/10.1016/j.colsurfa.2015.11.016

    Article  CAS  Google Scholar 

  22. Esfahani AR, Sadiq Z, Oyewunmi OD et al (2021) Portable, stable, and sensitive assay to detect phosphate in water with gold nanoparticles (AuNPs) and dextran tablet. Analyst 146:3697–3708. https://doi.org/10.1039/D0AN02063J

    Article  CAS  PubMed  Google Scholar 

  23. Edachana RP, Kumaresan A, Balasubramanian V et al (2020) Paper-based device for the colorimetric assay of bilirubin based on in-situ formation of gold nanoparticles. Microchim Acta 187(60):1–9. https://doi.org/10.1007/s00604-019-4051-z

    Article  CAS  Google Scholar 

  24. Zhang D, Liu Y, Ding J et al (2021) Label-free colorimetric assay for arsenic (III) determination based on a truncated short ssDNA and gold nanoparticles. Microchim Acta 188(38):1–9. https://doi.org/10.1007/s00604-020-04697-7

    Article  CAS  Google Scholar 

  25. Ravan H, Norouzi A, Sanadgol N, Hosseinzadeh E (2020) Colorimetric nanoplatform for visual determination of cancer cells via target-catalyzed hairpin assembly actuated aggregation of gold nanoparticles. Microchim Acta 187(392):1–8. https://doi.org/10.1007/s00604-020-04368-7

    Article  CAS  Google Scholar 

  26. Niu Z, Liu Y, Li X et al (2022) Colorimetric detection of sulfamethazine based on target resolved calixarene derivative stabilized gold nanoparticles aggregation. Microchim Acta 189(71):1–7. https://doi.org/10.1007/s00604-022-05176-x

    Article  CAS  Google Scholar 

  27. Chen C, Wang J (2020) Optical biosensors: an exhaustive and comprehensive review. Analyst 145:1605–1628. https://doi.org/10.1039/c9an01998g

    Article  CAS  PubMed  Google Scholar 

  28. Sadiq Z, Safiabadi Tali SH, Hajimiri H, et al (2022) Gold nanoparticles-based colorimetric assays for environmental monitoring and food safety evaluation. Crit Rev Anal Chem 1–36. https://doi.org/10.1080/10408347.2022.2162331

  29. Chen H, Zhou K, Zhao G (2018) Gold nanoparticles: from synthesis, properties to their potential application as colorimetric sensors in food safety screening. Trends Food Sci Technol 78:83–94. https://doi.org/10.1016/j.tifs.2018.05.027

    Article  CAS  Google Scholar 

  30. Zhang J, Xu X, Yang X (2012) Role of tris on the colorimetric recognition of anions with melamine-modified gold nanoparticle probe and the visual detection of sulfite and hypochlorite. Analyst 137:3437–3440. https://doi.org/10.1039/c2an35609k

    Article  CAS  PubMed  Google Scholar 

  31. Shanmugaraj K, Ilanchelian M (2017) Visual and optical detection of hypochlorite in water samples based on etching of gold/silver alloy nanoparticles. New J Chem 41:14130–14136. https://doi.org/10.1039/c7nj02682j

    Article  CAS  Google Scholar 

  32. Huang C-F, Yao G-H, Liang R-P, Qiu J-D (2013) Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A. Biosens Bioelectron 50:305–310. https://doi.org/10.1016/j.bios.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  33. Diem PHN, Thao DTT, Van PhuD et al (2017) Synthesis of gold nanoparticles stabilized in dextran solution by gamma Co-60 ray irradiation and preparation of gold nanoparticles/dextran powder. J Chem 2017:1–8. https://doi.org/10.1155/2017/6836375

    Article  CAS  Google Scholar 

  34. Al-Kassawneh M, Sadiq Z, Jahanshahi-Anbuhi S (2022) Pullulan-stabilized gold nanoparticles tablet as a nanozyme sensor for point-of-care applications. Sens Biosensing Res 38:100526. https://doi.org/10.1016/j.sbsr.2022.100526

    Article  Google Scholar 

  35. Al-Kassawneh M, Sadiq Z, Jahanshahi-Anbuhi S (2023) User-friendly and ultra-stable all-inclusive gold tablets for cysteamine detection. RSC Adv 13:19638–19650. https://doi.org/10.1039/d3ra03073c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sadiq Z, Safiabadi Tali SH, Jahanshahi-Anbuhi S (2022) Gold tablets: gold nanoparticles encapsulated into dextran tablets and their pH-responsive behavior as an easy-to-use platform for multipurpose applications. ACS Omega 7:11177–11189. https://doi.org/10.1021/acsomega.1c07393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He M, Liu X, Liu B, Yang J (2019) Investigation of antisolvent effect on gold nanoparticles during postsynthesis purification. J Colloid Interface Sci 537:414–421. https://doi.org/10.1016/j.jcis.2018.11.043

    Article  CAS  PubMed  Google Scholar 

  38. Liu Z, Lanier OL, Chauhan A (2020) Poly (vinyl alcohol) assisted synthesis and anti-solvent precipitation of gold nanoparticles. Nanomaterials 10:1–16. https://doi.org/10.3390/nano10122359

    Article  CAS  Google Scholar 

  39. Tang J, Fu X, Ou Q et al (2018) Hydroxide assisted synthesis of monodisperse and biocompatible gold nanoparticles with dextran. Mater Sci Eng, C 93:759–767. https://doi.org/10.1016/j.msec.2018.08.045

    Article  CAS  Google Scholar 

  40. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B Biointerfaces 58:3–7. https://doi.org/10.1016/j.colsurfb.2006.08.005

    Article  CAS  PubMed  Google Scholar 

  41. Pohanka M (2016) Toxicology and the biological role of methanol and ethanol: current view. Biomedical Papers 160:54–63. https://doi.org/10.5507/bp.2015.023

    Article  PubMed  Google Scholar 

  42. Baptista P, Pereira E, Eaton P et al (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950. https://doi.org/10.1007/s00216-007-1768-z

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Zhan L, Huang CZ (2010) One-pot preparation of dextran-capped gold nanoparticles at room temperature and colorimetric detection of dihydralazine sulfate in uric samples. Anal Methods 2:1982–1988. https://doi.org/10.1039/c0ay00470g

    Article  CAS  Google Scholar 

  44. Popovetskiy PS, Bulavchenko AI (2016) Determination of effective hydrodynamic diameters of biopolymer molecules in high-viscosity mixtures by photon-correlation spectroscopy. Colloid J 78:196–203. https://doi.org/10.1134/S1061933X16010142

    Article  CAS  Google Scholar 

  45. Tantra R, Schulze P, Quincey P (2010) Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology 8:279–285. https://doi.org/10.1016/j.partic.2010.01.003

    Article  CAS  Google Scholar 

  46. Kulsing C, Yang Y, Munera C et al (2014) Correlations between the zeta potentials of silica hydride-based stationary phases, analyte retention behaviour and their ionic interaction descriptors. Anal Chim Acta 817:48–60. https://doi.org/10.1016/j.aca.2014.01.054

    Article  CAS  PubMed  Google Scholar 

  47. Qing L, Zhao S, Wang ZG (2021) Surface charge density in electrical double layer capacitors with nanoscale cathode-anode separation. J Phys Chem B 125:625–636. https://doi.org/10.1021/acs.jpcb.0c09332

    Article  CAS  PubMed  Google Scholar 

  48. Varenne F, Coty JB, Botton J et al (2019) Evaluation of zeta potential of nanomaterials by electrophoretic light scattering: fast field reversal versus slow field reversal modes. Talanta 205:120062. https://doi.org/10.1016/j.talanta.2019.06.062

    Article  CAS  PubMed  Google Scholar 

  49. Chin CJ, Lu SC, Yiacoumi S, Tsouris C (2004) Fractal dimension of particle aggregates in magnetic fields. Sep Sci Technol 39:2839–2862. https://doi.org/10.1081/SS-200028768

    Article  CAS  Google Scholar 

  50. Wang X, Xiong YL (2016) Oxidative polyaldehyde production: a novel approach to the conjugation of dextran with soy peptides for improved emulsifying properties. J Food Sci Technol 53:3215–3224. https://doi.org/10.1007/s13197-016-2296-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu H, Shang-guan D, cong, Lu Q meng, et al (2020) Oxidation of dextran using H2O2 and NaClO/NaBr and their applicability in iron chelation. Int J Biol Macromol 144:615–623. https://doi.org/10.1016/j.ijbiomac.2019.12.104

    Article  CAS  PubMed  Google Scholar 

  52. Jailani S, Franks GV, Healy TW (2008) ζ-Potential of nanoparticle suspensions: effect of electrolyte concentration, particle size, and volume fraction. J Am Ceram Soc 91:1141–1147. https://doi.org/10.1111/j.1551-2916.2008.02277.x

    Article  CAS  Google Scholar 

  53. Xu X, Ji J, Chen P et al (2020) Salt-induced gold nanoparticles aggregation lights up fluorescence of DNA-silver nanoclusters to monitor dual cancer markers carcinoembryonic antigen and carbohydrate antigen 125. Anal Chim Acta 1125:41–49. https://doi.org/10.1016/j.aca.2020.05.027

    Article  CAS  PubMed  Google Scholar 

  54. Wesley RD, Cosgrove T, Thompson L et al (2000) Hydrodynamic layer thickness of a polybase brush in the presence of salt. Langmuir 16:4467–4469. https://doi.org/10.1021/la991263d

    Article  CAS  Google Scholar 

  55. Epsztein R, Shaulsky E, Qin M, Elimelech M (2019) Activation behavior for ion permeation in ion-exchange membranes: role of ion dehydration in selective transport. J Memb Sci 580:316–326. https://doi.org/10.1016/j.memsci.2019.02.009

    Article  CAS  Google Scholar 

  56. Kim Thanh NT, Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal Chem 74:1624–1628. https://doi.org/10.1021/ac011127p

    Article  CAS  Google Scholar 

  57. Zhang Z, Maji S, Antunes ABDF et al (2013) Salt plays a pivotal role in the temperature-responsive aggregation and layer-by-layer assembly of polymer-decorated gold nanoparticles. Chem Mater 25:4297–4303. https://doi.org/10.1021/cm402414u

    Article  CAS  Google Scholar 

  58. Andrade JM, Estévez-Pérez MG (2014) Statistical comparison of the slopes of two regression lines: a tutorial. Anal Chim Acta 838:1–12. https://doi.org/10.1016/j.aca.2014.04.057

    Article  CAS  PubMed  Google Scholar 

  59. Chen R, Xing S, Hu T et al (2023) Highly sensitive fluorescent sensor for hypochlorite in nearly 100% aqueous solution and its application for live-cell, plant and zebrafish imaging. Anal Chim Acta 1237:340557. https://doi.org/10.1016/j.aca.2022.340557

    Article  CAS  PubMed  Google Scholar 

  60. Ata S, Wattoo FH, Ahmed M et al (2015) A method optimization study for atomic absorption spectrophotometric determination of total zinc in insulin using direct aspiration technique. Alexandria J Med 51:19–23. https://doi.org/10.1016/j.ajme.2014.03.004

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Centre for NanoScience Research (CeNSR) at Concordia University, and Electron Microscopy Laboratories at McGill University in Montreal, Canada, for capturing TEM images.

Funding

This research project was financially supported by Natural Sciences and Engineering Research Council of Canada (grant No. NSERC-DG: N01986) and Concordia University Research Chair funds (grant No. CURC: CC0844).

Author information

Authors and Affiliations

Authors

Contributions

ZS: conceptualization, investigation, methodology, formal analysis, prepared figures, writing—original draft, review and editing; MK: formal analysis, methodology; SHST: review and editing, visualization; SA: conceptualization, project administration, supervision, resources. All authors read and commented on the full manuscript.

Corresponding author

Correspondence to Sana Jahanshahi-Anbuhi.

Ethics declarations

Ethics approval

Authors declare that our study “Tailoring plasmonic sensing strategies for the rapid and sensitive detection of hypochlorite in swimming water samples” does NOT involve human participants, their data or biological material.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3044 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadiq, Z., Al-Kassawneh, M., Safiabadi Tali, S. et al. Tailoring plasmonic sensing strategies for the rapid and sensitive detection of hypochlorite in swimming water samples. Microchim Acta 191, 183 (2024). https://doi.org/10.1007/s00604-024-06246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06246-y

Keywords

Navigation