Skip to main content
Log in

Preparation of surface molecular imprinting fluorescent sensor based on magnetic porous silica for sensitive and selective determination of catechol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A magnetic fluorescent molecularly imprinted sensor was successfully prepared and implemented to determine catechol (CT). Fe3O4 nanoparticles were synthesized by the solvothermal technique and mesoporous Fe3O4@SiO2@mSiO2 imprinted carriers were prepared by coating nonporous and mesoporous SiO2 shells on the surface of the Fe3O4 subsequently. The magnetic surface molecularly imprinted fluorescent sensor was created after the magnetic mesoporous carriers were modified with γ-methacryloxyl propyl trimethoxy silane to introduce double bonds on the surface of the carries and the polymerization was carried out in the presence of CT and fluorescent monomers. The magnetic mesoporous carriers were modified with γ-methacryloxyl propyl trimethoxy silane and double bonds were introduced on the surface of the carriers. After CT binding with the molecularly imprinted polymers (MIPs), the fluorescent intensity of the molecularly imprinted polymers (Ex = 400 nm, Em = 523 nm) increased significantly. The fluorescent intensity ratio (F/F0) of the sensor demonstrated a favorable linear correlation with the concentration of CT between 5 and 50 μM with a detection limit of 0.025 μM. Furthermore, the sensor was successfully applied to determine CT in actual samples with recoveries of 96.4–105% and relative standard deviations were lower than 3.5%. The results indicated that the research of our present work provided an efficient approach for swiftly and accurately determining organic pollutant in water.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study available from thecorresponding author upon request.

References

  1. IndrajithNaik E, Sunil Kumar Naik TS, Pradeepa E, Singh S, Naik HSB (2022) Design and fabrication of an innovative electrochemical sensor based on Mg-doped ZnO nanoparticles for the detection of toxic catechol. Mater Chem Phys 281:125860. https://doi.org/10.1016/j.matchemphys.2022.125860

    Article  CAS  Google Scholar 

  2. Wang J, Yang J, Xu P, Liu H, Zhang L, Zhang S, Tian L (2020) Gold nanoparticles decorated biochar modified electrode for the high-performance simultaneous determination of hydroquinone and catechol. Sens Actuators B Chem 306:127590. https://doi.org/10.1016/j.snb.2019.127590

    Article  CAS  Google Scholar 

  3. Lu Z, Wei K, Ma H, Duan R, Sun M, Zou P, Yin J, Wang X, Wang Y, Wu C, Su G, Wu M, Zhou X, Ye J, Rao H (2023) Bimetallic MOF synergy molecularly imprinted ratiometric electrochemical sensor based on MXene decorated with polythionine for ultra-sensitive sensing of catechol. Anal Chim Acta 1251:340983. https://doi.org/10.1016/j.aca.2023.340983

    Article  CAS  PubMed  Google Scholar 

  4. Huang SZ, Tang Q, Wei KN, Yang RP, Tao Z, Huang Y, Xiao X (2022) A colorimetric supramolecular sensor array based on charge-transfer complexes for multiplex aniline and phenolic pollutants detection. Anal Chim Acta 1233:340504. https://doi.org/10.1016/j.aca.2022.340504

    Article  CAS  PubMed  Google Scholar 

  5. Moldoveanu SC, Kiser M (2007) Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke. J Chromatogr A 1141:90–97. https://doi.org/10.1016/j.chroma.2006.11.100

    Article  CAS  PubMed  Google Scholar 

  6. Ye Q, Yan F, Kong D, Zhang J, Zhou X, Xu J, Chen L (2017) Constructing a fluorescent probe for specific detection of catechol based on 4-carboxyphenylboronic acid-functionalized carbon dots. Sens Actuators B Chem 250:712–720. https://doi.org/10.1016/j.snb.2017.03.081

    Article  CAS  Google Scholar 

  7. Wang YQ, Fang Z, Min H, Xu XY, Li Y (2022) Sensitive determination of ofloxacin by molecularly imprinted polymers containing ionic liquid functionalized carbon quantum dots and europium ion. ACS Appl Nano Mater 5:8467–8474. https://doi.org/10.1021/acsanm.2c01583

    Article  CAS  Google Scholar 

  8. Yang Y, Liu X, Meng S, Mao S, Tao W, Li Z (2023) Molecularly imprinted polymers-isolated AuNP-enhanced CdTe QD fluorescence sensor for selective and sensitive oxytetracycline detection in real water samples. J Hazard Mater 458:131941. https://doi.org/10.1016/j.jhazmat.2023.131941

    Article  CAS  PubMed  Google Scholar 

  9. Kang F, Yang W, Guo M, Pedersen LB, Nielsen LP (2023) Highly selective microsensor for monitoring trace phosphine in the environment. Anal Chem 95:2460–2468. https://doi.org/10.1021/acs.analchem.2c04652

    Article  CAS  PubMed  Google Scholar 

  10. Duo Y, Xiang Z, Gao G, Luo G, Tang BZ (2023) Biomedical application of aggregation-induced emission luminogen-based fluorescent sensors. TrAC, Trends Anal Chem 167:117252. https://doi.org/10.1111/1541-4337.13218

    Article  CAS  Google Scholar 

  11. Li H, Sheng W, Haruna SA, Hassan MM, Chen Q (2023) Recent advances in rare earth ion-doped upconversion nanomaterials: from design to their applications in food safety analysis. Compr Rev Food Sci Food Saf 22:3732–3764. https://doi.org/10.1111/1541-4337.13218

    Article  CAS  PubMed  Google Scholar 

  12. Wei X, Zhang S, Wang T, Chen A, Guo J, Bai B, Yang S, Li Y, Wang X, Liu X (2022) Molecularly imprinted CsPbBr3 quantum dot-based fluorescent sensor for trace tetracycline detection in aqueous environments. J Mater Chem C 10:8432–8440. https://doi.org/10.1039/D2TC00558A

    Article  CAS  Google Scholar 

  13. Aznar-Gadea E, Sanchez-Alarcon I, Soosaimanickam A, Rodriguez-Canto PJ, Perez-Pla F, Martínez-Pastor JP, Abargues R (2022) Molecularly imprinted nanocomposites of CsPbBr3 nanocrystals: an approach towards fast and selective gas sensing of explosive taggants. J Mater Chem C 10:1754–1766. https://doi.org/10.1039/D1TC05169E

    Article  CAS  Google Scholar 

  14. Belbruno JJ (2019) Molecularly imprinted polymers. Chem Rev 119:94–119. https://doi.org/10.1021/acs.chemrev.8b00171

    Article  CAS  PubMed  Google Scholar 

  15. Cao Y, Feng T, Xu J, Xue C (2019) Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors. Biosens Bioelectron 141:111447. https://doi.org/10.1016/j.bios.2019.111447

    Article  CAS  PubMed  Google Scholar 

  16. Zhou H, Liu R, Chen Q, Zheng X, Qiu J, Ding T, He L (2022) Surface molecularly imprinted solid-phase extraction for the determination of vancomycin and norvancomycin in milk by liquid chromatography coupled to tandem mass spectrometry. Food Chem 369:130886. https://doi.org/10.1016/j.foodchem.2021.130886

    Article  CAS  PubMed  Google Scholar 

  17. Song Z, Li J, Lu W, Li B, Yang G, Bi Y, Arabi M, Wang X, Ma J, Chen L (2022) Molecularly imprinted polymers based materials and their applications in chromatographic and electrophoretic separations. TrAC, Trends Anal Chem 146:116504. https://doi.org/10.1016/j.trac.2021.116504

    Article  CAS  Google Scholar 

  18. Wang J, Feng J, Wei C (2023) Molecularly imprinted polyaniline immobilized on Fe3O4/ZnO composite for selective degradation of amoxycillin under visible light irradiation. Appl Surf Sci 609:155324. https://doi.org/10.1016/j.apsusc.2022.155324

    Article  CAS  Google Scholar 

  19. Wang Y, Zhao W, Gao R, Hussain S, Hao Y, Tian J, Chen S, Feng Y, Zhao Y, Qu Y (2022) Preparation of lightweight daisy-like magnetic molecularly imprinted polymers via etching synergized template immobilization for enhanced rapid detection of trace 17β-estradiol. J Hazard Mater 424:127216. https://doi.org/10.1016/j.jhazmat.2021.127216

    Article  CAS  PubMed  Google Scholar 

  20. Shao Y, Wang P, Zheng R, Zhao Z, An J, Hao C, Kang M (2023) Preparation of molecularly imprinted ratiometric fluorescence sensor for visual detection of tetrabromobisphenol A in water samples. Microchim Acta 190:161. https://doi.org/10.1007/s00604-023-05745-8

    Article  CAS  Google Scholar 

  21. Huang Y, Sun X, Yang J, Cao Z, Wang R, Li L, Ding Y (2023) A molecularly imprinted electrochemical sensor with dual functional monomers for selective determination of gatifloxacin. Microchim Acta 190:261. https://doi.org/10.1007/s00604-023-05839-3

    Article  CAS  Google Scholar 

  22. Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211. https://doi.org/10.1039/C6CS00061D

    Article  CAS  PubMed  Google Scholar 

  23. Cao Y, Huang Z, Luo L, Li J, Li P, Liu X (2021) Rapid and selective extraction of norfloxacin from milk using magnetic molecular imprinting polymers nanoparticles. Food Chem 353:129464. https://doi.org/10.1016/j.foodchem.2021.129464

    Article  CAS  PubMed  Google Scholar 

  24. Zhang G, Ali MM, Feng X, Zhou J, Hu L (2021) Mesoporous molecularly imprinted materials: from preparation to biorecognition and analysis. TrAC, Trends Anal Chem 144:116426. https://doi.org/10.1016/j.trac.2021.116426

    Article  CAS  Google Scholar 

  25. Xie L, Guo J, Zhang Y, Hu Y, You Q, Shi S (2015) Novel molecular imprinted polymers over magnetic mesoporous silica microspheres for selective and efficient determination of protocatechuic acid in Syzygium aromaticum. Food Chem 178:18–25. https://doi.org/10.1016/j.foodchem.2015.01.069

    Article  CAS  PubMed  Google Scholar 

  26. Luo S, Sun X, Zhang L, Miao Y, Yan G (2024) Preparation of room-temperature phosphorescence-ratiometric fluorescence magnetic mesoporous imprinted microspheres and its application in detection of malachite green and tartrazine in multimatrix. Food Chem 430:137096. https://doi.org/10.1016/j.foodchem.2023.137096

    Article  CAS  PubMed  Google Scholar 

  27. Yang J, Chen S, Zhang B, Tu Q, Wang J, Yuan M (2022) Non-biological fluorescent chemosensors for pesticides detection. Talanta 240:123200. https://doi.org/10.1016/j.talanta.2021.123200

    Article  CAS  PubMed  Google Scholar 

  28. Zhang F, Chen F, Shen R, Chen YX, Zhao Z, Zhang B, Fang J (2023) Naphthalimide fluorescent skeleton for facile and accurate quantification of glutathione. Anal Chem 95:4301–4309. https://doi.org/10.1021/acs.analchem.2c04098

    Article  CAS  PubMed  Google Scholar 

  29. Mendes Alvarenga L, dos Reis Feliciano C, Giordano Alvarenga B, Maximiler Campos De Paula H, Luiza Coelho Y, Henrique Mendes Da Silva L, Fernando Gorup L, Gonçalves Santos M, Sindra Virtuoso L (2023) Preparation of a composite sensor based on a fluorescent and magnetic molecular imprint polymer for metronidazole extraction–detection. J Mol Liq 390:123027. https://doi.org/10.1016/j.molliq.2023.123027

    Article  CAS  Google Scholar 

  30. Zhu W, Zhou Y, Liu S, Luo M, Du J, Fan J, Xiong H, Peng H (2021) A novel magnetic fluorescent molecularly imprinted sensor for highly selective and sensitive detection of 4-nitrophenol in food samples through a dual-recognition mechanism. Food Chem 348:129126. https://doi.org/10.1016/j.foodchem.2021.129126

    Article  CAS  PubMed  Google Scholar 

  31. Nadali A, Leili M, Afkhami A, Bahrami A, Karami M (2021) Synthesize and application of magnetic molecularly imprinted polymers (mag-MIPs) to extract 1-Aminopyrene from the human urine sample. J Environ Chem Eng 9:106253. https://doi.org/10.1016/j.jece.2021.106253

    Article  CAS  Google Scholar 

  32. Shao Y, Zhu Y, Zheng R, Wang P, Zhao Z, An J (2022) Highly sensitive and selective surface molecularly imprinted polymer electrochemical sensor prepared by Au and MXene modified glassy carbon electrode for efficient detection of tetrabromobisphenol A in water. Adv Compos Hybrid Mater 5:3104–3116. https://doi.org/10.1007/s42114-022-00562-8

    Article  CAS  Google Scholar 

  33. Gauci G, Magri DC (2022) Solvent-polarity reconfigurable fluorescent 4-piperazino-N-aryl-1,8-naphthalimide crown ether logic gates. RSC Adv 12:35270–35278. https://doi.org/10.1039/d2ra07568g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu Y, Tan L, Wang K, Wang J (2022) Molecularly imprinted probe based on CdTe QDs and magnetic nanoparticles for selective recognition of malachite green in seawater and its sensing mechanisms. Microchim Acta 190:8. https://doi.org/10.1007/s00604-022-05579-w

    Article  CAS  Google Scholar 

  35. Zhao M, Wang J, Lian Z (2021) Fluorescence assay of oxytetracycline in seawater after selective capture using magnetic molecularly imprinted nanoparticles. Mar Pollut Bull 163:111962. https://doi.org/10.1016/j.marpolbul.2020.111962

    Article  CAS  PubMed  Google Scholar 

  36. Wang W, Xu Y, Liu X, Peng L, Huang T, Yan Y, Li C (2020) Efficient fabrication of ratiometric fluorescence imprinting sensors based on organic-inorganic composite materials and highly sensitive detection of oxytetracycline in milk. Microchem J 157:105053. https://doi.org/10.1016/j.microc.2020.105053

    Article  CAS  Google Scholar 

  37. Li H, Jiang J, Wang Z, Wang X, Liu X, Yan Y, Li C (2017) A high performance and highly-controllable core-shell imprinted sensor based on the surface-enhanced Raman scattering for detection of R6G in water. J Colloid Interface Sci 501:86–93. https://doi.org/10.1016/j.jcis.2017.04.010

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Toudeshki RM, Dadfarnia S, Haji Shabani AM (2019) Surface molecularly imprinted polymer on magnetic multi-walled carbon nanotubes for selective recognition and preconcentration of metformin in biological fluids prior to its sensitive chemiluminescence determination: central composite design optimization. Anal Chim Acta 1089:78–89. https://doi.org/10.1016/j.aca.2019.08.070

    Article  CAS  PubMed  Google Scholar 

  39. Liu J, Che R, Chen H, Zhang F, Xia F, Wu Q, Wang M (2012) Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8:1214–1221. https://doi.org/10.1002/smll.201102245

    Article  CAS  PubMed  Google Scholar 

  40. Choi H, Um K, Im M, Lee K (2015) A simple method for nanostructure engineering of mesoporous zinc silicate particles. Chem Mater 27:2343–2349. https://doi.org/10.1021/cm503768j

    Article  CAS  Google Scholar 

  41. Limaee NY, Rouhani S, Olya ME, Najafi F (2020) Selective recognition of herbicides in water using a fluorescent molecularly imprinted polymer sensor. J Fluoresc 30:375–387. https://doi.org/10.1007/s10895-020-02508-z

    Article  CAS  PubMed  Google Scholar 

  42. Wang L, Wen L, Zhao L, Chao J, Tao F, Wang F, Li C (2022) Development of fluorescence sensor and test paper based on molecularly imprinted carbon quantum dots for spiked detection of domoic acid in shellfish and lake water. Anal Chim Acta 1197:339515. https://doi.org/10.1016/j.aca.2022.339515

    Article  CAS  PubMed  Google Scholar 

  43. Xu Y, Huang T, Wang S, Meng M, Yan Y (2022) SiO2-coated molecularly imprinted sensor based on Si quantum dots for selective detection of catechol in river water. J Environ Chem Eng 10:106850. https://doi.org/10.1016/j.jece.2021.106850

    Article  CAS  Google Scholar 

  44. Huang T, Xu Y, Meng M, Li C (2022) PVDF-based molecularly imprinted ratiometric fluorescent test paper with improved visualization effect for catechol monitoring. Microchem J 178:107369. https://doi.org/10.1016/j.microc.2022.107369

    Article  CAS  Google Scholar 

  45. Rao H, Liu X, Ding F, Wan Y, Zhao X, Liang R, Zou P, Wang Y, Wang X, Zhao Q (2018) Nitrogen-doped carbon nanosheet frameworks decorated with Fe and molecularly imprinted polymer for simultaneous detection of mebendazole and catechol. Chem Eng J 338:478–487. https://doi.org/10.1016/j.cej.2018.01.064

    Article  CAS  Google Scholar 

  46. Wang H, Hu Q, Meng Y, Jin Z, Fang Z, Fu Q, Gao W, Xu L, Song Y, Lu F (2018) Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode. J Hazard Mater 353:151–157. https://doi.org/10.1016/j.jhazmat.2018.02.029

    Article  CAS  PubMed  Google Scholar 

  47. Yang Q, Li J, Wang X, Peng H, Xiong H, Chen L (2019) Dual-emission color-controllable nanoparticle based molecular imprinting ratiometric fluorescence sensor for the visual detection of Brilliant Blue. Sens Actuators B Chem 284:428–436. https://doi.org/10.1016/j.snb.2018.12.134

    Article  CAS  Google Scholar 

  48. Wang X, Yu J, Wu X, Fu J, Kang Q, Shen D, Li J, Chen L (2016) A molecular imprinting-based turn-on Ratiometric fluorescence sensor for highly selective and sensitive detection of 2,4-dichlorophenoxyacetic acid (2,4-D). Biosens Bioelectron 81:438–444. https://doi.org/10.1016/j.bios.2016.03.031

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The National Natural Science Foundation of China (Program No. 21806097, 22005234), the Natural Science Basic Research Plan in Shaanxi Province of China (2024JC-YBMS-109), the Shaanxi Provincial Education Department’s Scientific Research Program Funded (Program No. 18JK0104), and the Research Starting Foundation of Shaanxi University of Science and Technology (Program No. 2016BJ-80) are all to be thanked for their support of this study.

Author information

Authors and Affiliations

Authors

Contributions

Yanming Shao: conceptualization; investigation; methodology; data curation; writing—original draft; writing—review and editing. Zhizhen Zhao: investigation; methodology; formal analysis; data curation; validation; writing—original draft; writing—review and editing. Jun An: methodology; formal analysis. Caifeng Hao: investigation; data curation. Mengyi Kang: resources; validation. Xuan Rong: data curation. Huanhuan Zhao: validation. Huanran Feng: supervision.

Corresponding author

Correspondence to Yanming Shao.

Ethics declarations

Conflict of interest

The authors declare no competing of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1151 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Zhao, Z., An, J. et al. Preparation of surface molecular imprinting fluorescent sensor based on magnetic porous silica for sensitive and selective determination of catechol. Microchim Acta 191, 156 (2024). https://doi.org/10.1007/s00604-024-06244-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06244-0

Keywords

Navigation