Skip to main content

Advertisement

Log in

Enantiomeric analysis of chiral phenyl aromatic compounds by coated capillary electrochromatography based on a MOF-on-MOF stationary phase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Chiral phenyl aromatic compounds (CPACs) are widely used in drug development, food/cosmetic production, and other organic synthesis processes, and their different enantiomers have distinct physiological activities and application differences. A double-layer metal–organic framework composite (MOF-on-MOF) was obtained by in situ synthesis of chiral metal–organic framework (CMOM-3S) on the surface of an iron-based metal–organic framework (NH2-MIL-101(Fe)). According to our investigation, MOF-on-MOF composite was for the first time applied to the stationary phase of capillary electrochromatography (CEC), and enantioseparations of eight CPACs were accomplished. Compared with single CMOM-3S, the enantioseparation performance of the coated capillary columns based on NH2-MIL-101(Fe)@CMOM-3S was improved by 34.07 ~ 720.0%. The R-/S-mandelic acid in actual sample (apricot leaves) was detected by the newly CEC system to be 0.0118 mg mL−1 and 0.0523 mg mL−1, respectively. The spike recoveries were 96.60 ~ 104.7%, indicating its good stability and accuracy. In addition, the selective adsorption capacity of MOF-on-MOF composites was verified by adsorption experiments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. He T, Liu RY, Wang SH, On IKW, Wu YL, Xing Y, Yuan W, Guo JJ, Zhao YL (2023) Bottom-up design of photoactive chiral covalent organic frameworks for visible-light-driven asymmetric catalysis. J Am Chem Soc 145:18015–18021. https://doi.org/10.1021/jacs.3c05732

    Article  CAS  PubMed  Google Scholar 

  2. Aizawa H, Sato T, Maki-Yonekura S, Yonekura K, Takaba K, Hamaguchi T, Minato T, Yamamoto HM (2023) Enantioselectivity of discretized helical supramolecule consisting of achiral cobalt phthalocyanines via chiral-induced spin selectivity effect. Nat Commun 14:4530. https://doi.org/10.1038/s41467-023-40133-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kearney SE, Gangano AJ, Barrus DG, Rehrauer KJ, Reid TER, Navaratne PV, Tracy EK, Roitberg A, Ghiviriga I, Cunningham CW, Gamage T, Grenning AJ (2023) Axially chiral cannabinoids: design, synthesis, and cannabinoid receptor affinity. J Am Chem Soc 145(25):13581–13591. https://doi.org/10.1021/jacs.3c00129

    Article  CAS  PubMed  Google Scholar 

  4. Miller E, Kim S, Gibson K, Derrick JS, Toste FD (2020) Regio- and enantioselective bromocyclization of difluoroalkenes as a strategy to access tetrasubstituted difluoromethylene-containing stereocenters. J Am Chem Soc 142(19):8946–8952. https://doi.org/10.1021/jacs.0c02331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh RV, Sambyal K (2022) Green synthesis aspects of (R)-(-)-mandelic acid; a potent pharmaceutically active agent and its future prospects. Crit Rev Biotechnol 43(8):1226–1235. https://doi.org/10.1080/07388551.2022.2109004

    Article  CAS  PubMed  Google Scholar 

  6. Yi JR, Wang ZL, Li Z (2022) Cascade biotransformations for enantioconvergent conversion of racemic styrene oxides to (R)-mandelic acids. ACS Catal 12(21):13697–13702. https://doi.org/10.1021/acscatal.2c04472

    Article  CAS  Google Scholar 

  7. Liu HF, Chen J, Chen ML, Wang JH, Qiu HD (2023) Recent development of chiral ionic liquids for enantioseparation in liquid chromatography and capillary electrophoresis: a review. Anal Chim Acta 1274:341496. https://doi.org/10.1016/j.aca.2023.341496

    Article  CAS  PubMed  Google Scholar 

  8. Yu YY, Xu NY, Zhang JH, Wang BJ, Xie SM, Yuan LM (2020) Chiral metal-organic framework d-His-ZIF-8@SiO2 core-shell microspheres used for HPLC enantioseparations. ACS Appl Mater Interfaces 12(14):16903–16911. https://doi.org/10.1021/acsami.0c01023

    Article  CAS  PubMed  Google Scholar 

  9. Li XY, Ma QJ, Zheng XT, Chen Q, Sun XD (2023) Recent applications and chiral separation development based on stationary phases in open tubular capillary electrochromatography (2019–2022). J Pharm Anal 13(4):323–339. https://doi.org/10.1016/j.jpha.2023.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang L, Tan QG, Fan JQ, Sun C, Luo YT, Liang RP, Qiu JD (2023) Microfluidics for chiral separation of biomolecules. TrAC, Trends Anal Chem 158:116842. https://doi.org/10.1016/j.trac.2022.116842

    Article  CAS  Google Scholar 

  11. Betzenbichler G, Huber L, Krah S, Morkos MLK, Siegle AF, Trapp O (2022) Chiral stationary phases and applications in gas chromatography. Chirality 34(5):732–759. https://doi.org/10.1002/chir.23427

    Article  CAS  PubMed  Google Scholar 

  12. Salinas G, Niamlaem M, Kuhn A, Arnaboldi S (2022) Recent advances in electrochemical transduction of chiral information. Curr Opin Colloid Interface Sci 61:101626. https://doi.org/10.1016/j.cocis.2022.101626

    Article  CAS  Google Scholar 

  13. Wen YT, Li Z, Jiang JH (2019) Delving noble metal and semiconductor nanomaterials into enantioselective analysis. Chin Chem Lett 30(9):1565–1574. https://doi.org/10.1016/j.cclet.2019.05.036

    Article  CAS  Google Scholar 

  14. Döring A, Ushakova E, Rogach AL (2022) Chiral carbon dots: synthesis, optical properties, and emerging applications. Light Sci Appl 11(1):75. https://doi.org/10.1038/s41377-022-00764-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barron LD (2023) A careful disorderliness’ in biomolecular structure revealed by Raman optical activity. Spectrochim Acta A Mol Biomol Spectrosc 300(5):122959. https://doi.org/10.1016/j.saa.2023.122959

    Article  CAS  PubMed  Google Scholar 

  16. Ahmed MA, Ghiasvand A, Quirino JP (2023) Dynamic in situ growth of bonded-phase silica nanospheres on silica capillary inner walls for open-tubular liquid chromatography. Anal Bioanal Chem 415(20):4923–4934. https://doi.org/10.1007/s00216-023-04798-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moein MM (2021) Advancements of chiral molecularly imprinted polymers in separation and sensor fields: a review of the last decade. Talanta 224:121794. https://doi.org/10.1016/j.talanta.2020.121794

    Article  CAS  PubMed  Google Scholar 

  18. Zhao HY, Wang YZ, Zhang DY, Cheng HY, Wang YC (2018) Electrochromatographic performance of graphene and graphene oxide modified silica particles packed capillary columns. Electrophoresis 39(7):933–940. https://doi.org/10.1002/elps.201700435

    Article  CAS  PubMed  Google Scholar 

  19. Snyder BER, Turkiewicz AB, Furukawa H, Paley MV, Velasquez EO, Dods MN, Long JR (2023) A ligand insertion mechanism for cooperative NH3 capture in metal-organic frameworks. Nature 613(7943):287–291. https://doi.org/10.1038/s41586-022-05409-2

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Gonzalez MI, Turkiewicz AB, Darago LE, Oktawiec J, Bustillo K, Grandjean F, Long GJ, Long JR (2020) Confinement of atomically defined metal halide sheets in a metal-organic framework. Nature 577(7788):64–68. https://doi.org/10.1038/s41586-019-1776-0

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Furukawa S, Hirai K, Nakagawa K, Takashima Y, Matsuda R, Tsuruoka T, Kondo M, Haruki R, Tanaka D, Sakamoto H, Shimomura S, Sakata O, Kitagawa S (2009) Heterogeneously hybridized porous coordination polymer crystals: fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship. Angew Chem Int Ed Engl 48(10):1766–1770. https://doi.org/10.1002/ange.200804836

    Article  CAS  PubMed  Google Scholar 

  22. De Yoreo JJ, Gilbert PU, Sommerdijk NA, Penn RL, Whitelam S, Joester D, Zhang HZ, Rimer JD, Navrotsky A, Banfield JF, Wallace AF, Michel FM, Meldrum FC, Colfen H, Dove PM (2015) Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349(6247):aaa6760. https://doi.org/10.1126/science.aaa6760

    Article  CAS  PubMed  Google Scholar 

  23. Lee Y, Kim S, Kang JK, Cohen SM (2015) Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Chem Commun 51(26):5735–5738. https://doi.org/10.1039/c5cc00686d

    Article  CAS  Google Scholar 

  24. Wang MH, Hu MY, Li ZZ, He LH, Song YP, Jia QJ, Zhang ZH, Du M (2019) Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells. Biosens Bioelectron 142:111536. https://doi.org/10.1016/j.bios.2019.111536

    Article  CAS  PubMed  Google Scholar 

  25. Zhou N, Su FF, Guo CP, He LH, Jia ZK, Wang MH, Jia QJ, Zhang ZH, Lu SY (2019) Two-dimensional oriented growth of Zn-MOF-on-Zr-MOF architecture: a highly sensitive and selective platform for detecting cancer markers. Biosens Bioelectron 123:51–58. https://doi.org/10.1016/j.bios.2018.09.079

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Zhang SY, Fairen-Jimenez D, Zaworotko MJ (2020) Structural elucidation of the mechanism of molecular recognition in chiral crystalline sponges. Angew Chem Int Ed Engl 59(40):17600–17606. https://doi.org/10.1002/anie.202006438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng CH, Song BQ, Lusi M, Bezrukov AA, Haskins MM, Gao MY, Peng YL, Ma JG, Cheng P, Mukherjee S, Zaworotko MJ (2023) Crystal engineering of a chiral crystalline sponge that enables absolute structure determination and enantiomeric separation. Cryst Growth Des 23(7):5211–5220. https://doi.org/10.1021/acs.cgd.3c00446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lebedev OI, Millange F, Serre C, Van Tendeloo G, Ferey G (2005) First direct imaging of giant pores of the metal-organic framework MIL-101. Chem Mater 17(26):6525–6527. https://doi.org/10.1021/cm051870o

    Article  CAS  Google Scholar 

  29. Liu P, Li X, Xu XC, Ye K, Wang LJ, Zhu HJ, Wang MZ, Niu XH (2021) Integrating peroxidase-mimicking activity with photoluminescence into one framework structure for high-performance ratiometric fluorescent pesticide sensing. Sensors Actuators B-Chem 328:129024. https://doi.org/10.1016/j.snb.2020.129024

    Article  CAS  Google Scholar 

  30. Li XH, Guo WL, Liu ZH, Wang RQ, Liu H (2017) Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A. J Hazard Mater 324:665–672. https://doi.org/10.1016/j.jhazmat.2016.11.040

    Article  CAS  PubMed  Google Scholar 

  31. Gecgel C, Simsek UB, Gozmen B, Turabik M (2019) Comparison of MIL-101(Fe) and amine-functionalized MIL-101(Fe) as photocatalysts for the removal of imidacloprid in aqueous solution. J Iran Chem Soc 16(8):1735–1748. https://doi.org/10.1007/s13738-019-01647-w

    Article  CAS  Google Scholar 

  32. Sun XD, Niu B, Zhang Q, Chen Q (2022) MIL-53-based homochiral metal-organic framework as a stationary phase for open-tubular capillary electrochromatography. J Pharm Anal 12(3):509–516. https://doi.org/10.1016/j.jpha.2021.12.004

    Article  PubMed  Google Scholar 

  33. Wang C, Zhu DY, Zhang J, Du YX (2022) Homochiral iron-based gamma-cyclodextrin metal-organic framework for stereoisomer separation in the open tubular capillary electrochromatography. J Pharm Biomed Anal 215:114777. https://doi.org/10.1016/j.jpba.2022.114777

    Article  CAS  PubMed  Google Scholar 

  34. Li ZT, Mao ZK, Zhou W, Chen ZL (2020) Gamma-cyclodextrin metal-organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation. Talanta 218:121160. https://doi.org/10.1016/j.talanta.2020.121160

    Article  CAS  PubMed  Google Scholar 

  35. Partlan E, Ren Y, Apul OG, Ladner DA, Karanfil T (2020) Adsorption kinetics of synthetic organic contaminants onto superfine powdered activated carbon. Chemosphere 253:126628. https://doi.org/10.1016/j.chemosphere.2020.126628

    Article  CAS  PubMed  Google Scholar 

  36. Nune SK, Thallapally PK, McGrail BP, Annapureddy HV, Dang LX, Mei D, Karri N, Alvine JK, Olszta MJ, Arey BW, Dohnalkova A (2015) Adsorption kinetics in nanoscale porous coordination polymers. ACS Appl Mater Interfaces 7(39):21712–21716. https://doi.org/10.1021/acsami.5b04109

    Article  CAS  PubMed  Google Scholar 

  37. Tran HN, Bollinger JC, Lima EC, Juang RS (2023) How to avoid mistakes in treating adsorption isotherm data (liquid and solid phases): some comments about correctly using Radke-Prausnitz nonlinear model and Langmuir equilibrium constant. J Environ Manage 325(1):116475. https://doi.org/10.1016/j.jenvman.2022.116475

    Article  CAS  PubMed  Google Scholar 

  38. Gritti F, Guiochon G (2013) Analytical solution of the ideal model of chromatography for a bi-Langmuir adsorption isotherm. Anal Chem 85(18):8552–8558. https://doi.org/10.1021/ac4015897

    Article  CAS  PubMed  Google Scholar 

  39. Mahmood-Ul-Hassan M, Yasin M, Yousra M, Ahmad R, Sarwar S (2018) Kinetics, isotherms, and thermodynamic studies of lead, chromium, and cadmium bio-adsorption from aqueous solution onto Picea smithiana sawdust. Environ Sci Pollut Res 25(13):12570–12578. https://doi.org/10.1007/s11356-018-1300-3

    Article  CAS  Google Scholar 

  40. Bortnowska G (2022) Effects of composition and storage time of biopolymers-based emulsion-filled gels on the retention and release of aroma compounds: thermodynamic and kinetic studies. Food Chem 382:132308. https://doi.org/10.1016/j.foodchem.2022.132308

    Article  CAS  PubMed  Google Scholar 

  41. Emami F, Maeder M, Abdollahi H (2015) Model-based analysis of coupled equilibrium-kinetic processes: indirect kinetic studies of thermodynamic parameters using the dynamic data. Analyst 140(9):3121–3135. https://doi.org/10.1039/c4an02279c

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Project of National Natural Science Foundation of China (No.: 82073809).

Author information

Authors and Affiliations

Authors

Contributions

Pandeng Miao: conceptualization, data curation, formal analysis, investigation, methodology, writing—original draft, writing—review and editing; Jiaquan Chen: methodology; Guangfu Xu: methodology; Tao Yu: writing—review and editing; Yingxiang Du*: methodology, conceptualization, formal analysis, and writing—review and editing. All authors named in the manuscript have made a significant contribution to the writing, concept, design, execution, or interpretation of the work represented. All authors agree with the authors’ list appeared in the manuscript.

Corresponding author

Correspondence to Yingxiang Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Data availability

Data cannot be shared for ethical/privacy reasons. The data underlying this article cannot be shared publicly due to the privacy of individuals that participated in the study. The data will be shared on reasonable request to the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3088 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, P., Chen, J., Xu, G. et al. Enantiomeric analysis of chiral phenyl aromatic compounds by coated capillary electrochromatography based on a MOF-on-MOF stationary phase. Microchim Acta 191, 160 (2024). https://doi.org/10.1007/s00604-024-06243-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06243-1

Keywords

Navigation