Skip to main content
Log in

PathoSense: a rapid electroanalytical device platform for screening Salmonella in water samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Salmonella contamination is a major global health challenge, causing significant foodborne illness. However, current detection methods face limitations in sensitivity and time, which mostly rely on the culture-based detection techniques. Hence, there is an immediate and critical need to enhance early detection, reduce the incidence and impact of Salmonella contamination resulting in outbreaks. In this work, we demonstrate a portable non-faradaic, electrochemical sensing platform capable of detecting Salmonella in potable water with an assay turnaround time of ~ 9 min. We evaluated the effectiveness of this sensing platform by studying two sensor configurations: one utilizing pure gold (Au) and the other incorporating a semiconductor namely a zinc oxide thin film coated on the surface of the gold (Au/ZnO). The inclusion of zinc oxide was intended to enhance the sensing capabilities of the system. Through comprehensive experimentation and analysis, the LoD (limit of detection) values for the Au sensor and Au/ZnO sensor were 0.9 and 0.6 CFU/mL, respectively. In addition to sensitivity, we examined the sensing platform’s precision and reproducibility. Both the Au sensor and Au/ZnO sensor exhibited remarkable consistency, with inter-study percentage coefficient of variation (%CV) and intra-study %CV consistently below 10%. The proposed sensing platform exhibits high sensitivity in detecting low concentrations of Salmonella in potable water. Its successful development demonstrates its potential as a rapid and on-site detection tool, offering portability and ease of use. This research opens new avenues for electrochemical-based sensors in food safety and public health, mitigating Salmonella outbreaks and improving water quality monitoring.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Newell DG, Koopmans M, Verhoef L et al (2010) Food-borne diseases - the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:S3–S15. https://doi.org/10.1016/j.ijfoodmicro.2010.01.021

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cabral JPS (2010) Water microbiology. Bacterial pathogens and water. Int J Environ Res Public Health 7:3657–3703. https://doi.org/10.3390/ijerph7103657

    Article  PubMed  PubMed Central  Google Scholar 

  3. Craig M (2019) CDC’s antibiotic resistance threats report. Extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Highlights from the 2017 surveillance report. Retrieved April 29:2020

  4. Lee KM, Runyon M, Herrman TJ et al (2015) Review of Salmonella detection and identification methods: aspects of rapid emergency response and food safety. Food Control 47:264–276. https://doi.org/10.1016/j.foodcont.2014.07.011

    Article  Google Scholar 

  5. Pashazadeh P, Mokhtarzadeh A, Hasanzadeh M et al (2017) Nano-materials for use in sensing of Salmonella infections: recent advances. Biosens Bioelectron 87:1050–1064. https://doi.org/10.1016/j.bios.2016.08.012

    Article  CAS  PubMed  Google Scholar 

  6. Coburn B, Grassl GA, Finlay BB (2007) Salmonella, the host and disease: a brief review. Immunol Cell Biol 85:112–118. https://doi.org/10.1038/sj.icb.7100007

    Article  PubMed  Google Scholar 

  7. Onwuezobe IA, Oshun PO, Odigwe CC (2012) Antimicrobials for treating symptomatic non-typhoidal Salmonella infection. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd001167.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tsougeni K, Papadakis G, Gianneli M et al (2016) Plasma nanotextured polymeric lab-on-a-chip for highly efficient bacteria capture and lysis. Lab Chip 16:120–131. https://doi.org/10.1039/c5lc01217a

    Article  CAS  PubMed  Google Scholar 

  9. Mandal PK, Biswas AK, Choi K, Pal UK (2011) Methods for rapid detection of foodborne pathogens: an overview. Am J Food Technol 6:87–102

    Article  Google Scholar 

  10. Singh G, Sithebe A, Enitan AM et al (2017) Comparison of droplet digital PCR and quantitative PCR for the detection of Salmonella and its application for river sediments. J Water Health 15:505–508. https://doi.org/10.2166/wh.2017.259

    Article  PubMed  Google Scholar 

  11. Walker DI, McQuillan J, Taiwo M et al (2017) A highly specific Escherichia coli qPCR and its comparison with existing methods for environmental waters. Water Res 126:101–110. https://doi.org/10.1016/j.watres.2017.08.032

    Article  CAS  PubMed  Google Scholar 

  12. Radhika M, Saugata M, Murali HS, Batra HV (2014) A novel multiplex PCR for the simultaneous detection of Salmonella enterica and Shigella species. Braz J Microbiol 45:667–676. https://doi.org/10.1590/S1517-83822014005000041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang W, Liu L, Song S et al (2015) A highly sensitive ELISA and immunochromatographic strip for the detection of Salmonella typhimurium in milk samples. Sensors (Switzerland) 15:5281–5292. https://doi.org/10.3390/s150305281

    Article  ADS  CAS  Google Scholar 

  14. Valdivieso-Garcia A, Riche E, Abubakar O et al (2001) A double antibody sandwich enzyme-linked immunosorbent assay for the detection of Salmonella using biotinylated monoclonal antibodies. J Food Prot 64:1166–1171. https://doi.org/10.4315/0362-028X-64.8.1166

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Jasim I, Shen Z et al (2019) A microfluidic based biosensor for rapid detection of Salmonella in food products. PLoS ONE 14:1–18. https://doi.org/10.1371/journal.pone.0216873

    Article  CAS  Google Scholar 

  16. Bhunia AK (2008) Chapter 1 - biosensors and bio‐based methods for the separation and detection of foodborne pathogens. In: Taylor SL (ed). Academic Press, pp 1–44

  17. Wang Y, Salazar JK (2016) Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Compr Rev Food Sci Food Saf 15:183–205. https://doi.org/10.1111/1541-4337.12175

    Article  CAS  PubMed  Google Scholar 

  18. Silley P, Forsythe S (1996) Impedance microbiology—a rapid change for microbiologists. J Appl Bacteriol 80:233–243. https://doi.org/10.1111/j.1365-2672.1996.tb03215.x

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Dhamu VN, Poudyal DC, Muthukumar S, Prasad S (2021) A highly sensitive electrochemical sensor system to detect and distinguish between glyphosate and glufosinate. J Electrochem Soc 168:057531. https://doi.org/10.1149/1945-7111/ac00f7

    Article  CAS  Google Scholar 

  20. Cioffi A, Mancini M, Gioia V, Cinti S (2021) Office paper-based electrochemical strips for organophosphorus pesticide monitoring in agricultural soil. Environ Sci Technol 55:8859–8865. https://doi.org/10.1021/acs.est.1c01931

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Li X, Gao X, Gai P et al (2020) Degradable metal-organic framework/methylene blue composites-based homogeneous electrochemical strategy for pesticide assay. Sens Actuators B Chem 323:128701. https://doi.org/10.1016/j.snb.2020.128701

    Article  CAS  Google Scholar 

  22. Liu X, Cheng H, Zhao Y et al (2022) Portable electrochemical biosensor based on laser-induced graphene and MnO2 switch-bridged DNA signal amplification for sensitive detection of pesticide. Biosens Bioelectron 199:113906. https://doi.org/10.1016/j.bios.2021.113906

    Article  CAS  PubMed  Google Scholar 

  23. Poudyal DC, Dhamu VN, Paul A et al (2022) A novel single step method to rapidly screen for metal contaminants in beverages, a case study with aluminum. Environ Technol Innov 28:102691. https://doi.org/10.1016/j.eti.2022.102691

    Article  CAS  Google Scholar 

  24. Poudyal DC, Dhamu VN, Samson M et al (2022) Portable pesticide electrochem-sensor: a label-free detection of glyphosate in human urine. Langmuir 38:1781–1790. https://doi.org/10.1021/acs.langmuir.1c02877

    Article  CAS  PubMed  Google Scholar 

  25. Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15:913–947. https://doi.org/10.1002/elan.200390114

    Article  CAS  Google Scholar 

  26. Davis F, Nabok AV, Higson SPJ (2005) Species differentiation by DNA-modified carbon electrodes using an ac impedimetric approach. Biosens Bioelectron 20:1531–1538. https://doi.org/10.1016/j.bios.2004.06.039

    Article  CAS  PubMed  Google Scholar 

  27. Tlili A, Abdelghani A, Ameur S, Jaffrezic-Renault N (2006) Impedance spectroscopy and affinity measurement of specific antibody-antigen interaction. Mater Sci Eng, C 26:546–550. https://doi.org/10.1016/j.msec.2005.10.007

    Article  CAS  Google Scholar 

  28. Gai P, Pu L, Wang C, et al (2023) CeO2@NC nanozyme with robust dephosphorylation ability of phosphotriester: a simple colorimetric assay for rapid and selective detection of paraoxon. Biosens Bioelectron 220. https://doi.org/10.1016/j.bios.2022.114841

  29. Li H, Zhao S, Wang Z, Li F (2023) Controllable preparation of 2D V2O5 peroxidase-mimetic nanozyme to develop portable paper-based analytical device for intelligent pesticide assay. Small 19:1–10. https://doi.org/10.1002/smll.202206465

    Article  CAS  Google Scholar 

  30. Yu L, Chang J, Zhuang X et al (2022) Two-dimensional cobalt-doped Ti3C2 MXene nanozyme-mediated homogeneous electrochemical strategy for pesticides assay based on in situ generation of electroactive substances. Anal Chem 94:3669–3676. https://doi.org/10.1021/acs.analchem.1c05300

    Article  CAS  PubMed  Google Scholar 

  31. Dhamu VN, Poudyal DC, Telang CM et al (2022) Electrochemically mediated multi-modal detection strategy-driven sensor platform to detect and quantify pesticides. Electrochemical Science Advances 2:1–14. https://doi.org/10.1002/elsa.202100128

    Article  CAS  Google Scholar 

  32. Poudyal DC, Dhamu VN, Samson M et al (2023) Pesticide analytical screening system (PASS): a novel electrochemical system for multiplex screening of glyphosate and chlorpyrifos in high-fat and low-fat food matrices. Food Chem 400:134075. https://doi.org/10.1016/j.foodchem.2022.134075

    Article  CAS  PubMed  Google Scholar 

  33. Xu B, Qi F, Zhang J et al (2016) Cobalt modified red mud catalytic ozonation for the degradation of bezafibrate in water: catalyst surface properties characterization and reaction mechanism. Chem Eng J 284:942–952. https://doi.org/10.1016/j.cej.2015.09.032

    Article  CAS  Google Scholar 

  34. Pattnaik P (2005) Surface plasmon resonance: applications in understanding receptor-ligand interaction. Appl Biochem Biotechnol 126:79–92. https://doi.org/10.1385/abab:126:2:079

    Article  CAS  PubMed  Google Scholar 

  35. Heinrich L, Tissot N, Hartmann DJ, Cohen R (2010) Comparison of the results obtained by ELISA and surface plasmon resonance for the determination of antibody affinity. J Immunol Methods 352:13–22. https://doi.org/10.1016/j.jim.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  36. Upasham S, Prasad S (2021) Tuning SLOCK toward chronic disease diagnostics and management: label-free sweat interleukin-31 detection. ACS Omega 6:20422–20432. https://doi.org/10.1021/acsomega.1c02414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ukuku DO, Fett WF (2002) Relationship of cell surface charge and hydrophobicity to strength of attachment of bacteria to cantaloupe rind. J Food Prot 65:1093–1099. https://doi.org/10.4315/0362-028X-65.7.1093

    Article  PubMed  Google Scholar 

  38. Dickson JS, Koohmaraie M (1989) Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl Environ Microbiol 55:832–836. https://doi.org/10.1128/aem.55.4.832-836.1989

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jagannath B, Muthukumar S, Prasad S (2018) Electrical double layer modulation of hybrid room temperature ionic liquid/aqueous buffer interface for enhanced sweat based biosensing. Anal Chim Acta 1016:29–39. https://doi.org/10.1016/j.aca.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  40. Munje RD, Muthukumar S, Prasad S (2017) Lancet-free and label-free diagnostics of glucose in sweat using zinc oxide based flexible bioelectronics. Sens Actuators B Chem 238:482–490. https://doi.org/10.1016/j.snb.2016.07.088

    Article  CAS  Google Scholar 

  41. Vitarelli MJ Jr (2013) Using electrical chemical impedance spectroscopy to determine nanocapillary geometry and differential capacitance by developing a variable topology network circuit model. Rutgers The State University of New Jersey, School of Graduate Studies

  42. Lim CY, Owens NA, Wampler RD et al (2014) Succinimidyl ester surface chemistry: implications of the competition between aminolysis and hydrolysis on covalent protein immobilization. Langmuir 30:12868–12878. https://doi.org/10.1021/la503439g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luo X, Davis JJ (2013) Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev 42:5944–5962. https://doi.org/10.1039/c3cs60077g

    Article  CAS  PubMed  Google Scholar 

  44. Chang BY, Park SM (2010) Electrochemical impedance spectroscopy. Annu Rev Anal Chem 3:207–229. https://doi.org/10.1146/annurev.anchem.012809.102211

    Article  CAS  Google Scholar 

  45. Dhamu VN, Poudyal DC, Telang CM, et al (2022) Electrochemically mediated multi-modal detection strategy-driven sensor platform to detect and quantify pesticides. Electrochem Sci Adv 2. https://doi.org/10.1002/elsa.202100128

  46. Krishna MS, Singh S, Batool M, et al (2022) A review on 2D-ZnO nanostructure based biosensors: from materials to devices. Mater Adv 320–354. https://doi.org/10.1039/d2ma00878e

  47. McEnroe RJ et al (2014) CLSI. Evaluation of precision of quantitative measurement procedures; approved guideline. CLSI document EP05-A3; Clinical and Laboratory Standards Institute Wayne (PA)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Prasad.

Ethics declarations

Competing interests

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Drs. Shalini Prasad and Sriram Muthukumar have a significant interest in Enlisense LLC, a company that may have a commercial interest in the results of this research and technology. The potential individual conflict of interest has been reviewed and managed by The University of Texas at Dallas and played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report, or in the decision to submit the report for publication. Portable device and technology platform is a proprietary of EnLiSense LLC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 397 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, K.K., Dhamu, V.N., Poudyal, D.C. et al. PathoSense: a rapid electroanalytical device platform for screening Salmonella in water samples. Microchim Acta 191, 146 (2024). https://doi.org/10.1007/s00604-024-06232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06232-4

Keywords

Navigation