Skip to main content
Log in

Isoelectric trapping and discrimination of histones from plasma in a microfluidic device using dehydrated isoelectric gate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Histones are basic proteins with an isoelectric point around 11. It has been shown that the level of plasma circulating histones increases significantly during sepsis, and circulating free histones are associated with sepsis severity and mortality. It was found that the median plasma total free histone concentration of sepsis ICU non-survivors is higher compared to survivors. Therefore, histone concentration can serve as a prognostic indicator and there is a need for a simple, low-cost, and rapid method for measuring histone levels. In this work, we have developed a microfluidic device containing an isoelectric membrane made of dehydrated agarose gel of a specific pH embedded in a porous membrane for isoelectric trapping of histones rapidly. Although isoelectric gates have been used for trapping proteins before, they have to be introduced at the time of the experiment. Here, we show that isoelectric gates formed by gels loaded in a scaffold can be integrated directly into the fabrication process flow, dehydrated for storage, and rehydrated during the experiment and still function effectively to achieve isoelectric trapping. A low-cost and rapid microfabrication technique, xurography, was used for agarose integration and device fabrication. The integrated device was tested with samples containing buffered histone, histone in the presence of high-concentration bovine serum albumin (BSA), and histone spiked in blood plasma. The results show that the device can be used to distinguish between survivors and non-survivors of sepsis in less than 10 min, making it suitable as a point-of-care device for sepsis prognosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nofi CP, Wang P, Aziz M (2022) Chromatin-associated molecular patterns (CAMPs) in sepsis. Cell Death Dis 13(8):700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wildhagen KC, Wiewel MA, Schultz MJ, Horn J, Schrijver R, Reutelingsperger CP, van der Poll T, Nicolaes GA (2015) Extracellular histone H3 levels are inversely correlated with antithrombin levels and platelet counts and are associated with mortality in sepsis patients. Thromb Res 136(3):542–547

    Article  CAS  PubMed  Google Scholar 

  3. Marsman G, Zeerleder S, Luken BM (2016) Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation. Cell Death Dis 7(12):e2518–e2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Wan D, Luo X, Song T, Wang Y, Yu Q, Jiang L, Liao R, Zhao W, Su B (2021) Circulating histones in sepsis: potential outcome predictors and therapeutic targets. Front Immunol 12:650184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gargano AF, Shaw JB, Zhou M, Wilkins CS, Fillmore TL, Moore RJ, Somsen GW, Paša-Tolić L (2018) Increasing the separation capacity of intact histone proteoforms chromatography coupling online weak cation exchange-HILIC to reversed phase LC UVPD-HRMS. J Proteome Res 17(11):3791–3800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu Z, Huang Y, Mao P, Zhang J, Li Y (2015) Sepsis and ARDS: the dark side of histones. Mediat Inflamm 2015:205054

  7. Ito T, Nakahara M, Masuda Y, Ono S, Yamada S, Ishikura H, Imaizumi H, Kamikokuryo C, Kakihana Y, Maruyama I (2018) Circulating histone H3 levels are increased in septic mice in a neutrophil-dependent manner: preclinical evaluation of a novel sandwich ELISA for histone H3. J Intensive Care 6:1–6

    Article  Google Scholar 

  8. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, Taylor FB, Esmon NL, Lupu F, Esmon CT (2009) Extracellular histones are major mediators of death in sepsis. Nat Med 15(11):1318–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Han Z, Yuan Z, Shu L, Li T, Yang F, Chen L (2023) Extracellular histone H3 facilitates ferroptosis in sepsis through ROS/JNK pathway. Immun, Inflamm Dis 11(1):e754

    Article  CAS  PubMed  Google Scholar 

  10. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J-D, Coopersmith CM (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Purcarea A, Sovaila S (2020) Sepsis, a 2020 review for the internist. Rom J Intern Med 58(3):129–137

    PubMed  Google Scholar 

  12. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34(6):1589–1596

    Article  PubMed  Google Scholar 

  13. Cheng Z, Abrams ST, Alhamdi Y, Toh J, Yu W, Wang G, Toh C-H (2019) Circulating histones are major mediators of multiple organ dysfunction syndrome in acute critical illnesses. Crit Care Med 47(8):e677–e684

    Article  PubMed  Google Scholar 

  14. Eichhorn T, Linsberger I, Lauková L, Tripisciano C, Fendl B, Weiss R, König F, Valicek G, Miestinger G, Hörmann C (2021) Analysis of inflammatory mediator profiles in sepsis patients reveals that extracellular histones are strongly elevated in nonsurvivors. Mediat Inflamm 2021:8395048

  15. Ekaney ML, Otto GP, Sossdorf M, Sponholz C, Boehringer M, Loesche W, Rittirsch D, Wilharm A, Kurzai O, Bauer M (2014) Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Crit Care 18(5):1–9

    Article  Google Scholar 

  16. García-Giménez J, Romá-Mateo C, Carbonell N, Palacios L, Peiró-Chova L, García-López E, García-Simón M, Lahuerta R, Gimenez-Garzó C, Berenguer-Pascual E (2017) A new mass spectrometry-based method for the quantification of histones in plasma from septic shock patients. Sci Rep 7(1):1–10

    Article  Google Scholar 

  17. Lu N-F, Jiang L, Zhu B, Yang D-G, Zheng R-Q, Shao J, Xi X-M (2020) Elevated plasma histone H4 level predicts increased risk of mortality in patients with sepsis. Ann Palliat Med 9:1084–1091

    Article  PubMed  Google Scholar 

  18. Yokoyama Y, Ito T, Yasuda T, Furubeppu H, Kamikokuryo C, Yamada S, Maruyama I, Kakihana Y (2019) Circulating histone H3 levels in septic patients are associated with coagulopathy, multiple organ failure, and death: a single-center observational study. Thromb J 17(1):1–7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhan X, Liu D, Dong Y, Gao Y, Xu X, Xie T, Zhou H, Wang G, Zhang H, Wu P (2022) Early changes and predictive value of serum histone H3 concentration in urosepsis: a prospective observational study. Adv Ther 39(3):1310–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, Wang SS, Brohi K, Kipar A, Yu W (2013) Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med 187(2):160–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alhamdi Y, Abrams ST, Cheng Z, Jing S, Su D, Liu Z, Lane S, Welters I, Wang G, Toh C-H (2015) Circulating histones are major mediators of cardiac injury in patients with sepsis. Crit Care Med 43(10):2094–2103

    Article  CAS  PubMed  Google Scholar 

  22. Mai J, Sommer GJ, Hatch AV (2012) Microfluidic digital isoelectric fractionation for rapid multidimensional glycoprotein analysis. Anal Chem 84(8):3538–3545

    Article  CAS  PubMed  Google Scholar 

  23. Pergande MR, Cologna SM (2017) Isoelectric point separations of peptides and proteins. Proteomes 5(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sommer GJ, Mai J, Singh AK, Hatch AV (2011) Microscale isoelectric fractionation using photopolymerized membranes. Anal Chem 83(8):3120–3125

    Article  CAS  PubMed  Google Scholar 

  25. Damodara S, Dwivedi DJ, Liaw PC, Fox-Robichaud AE, Selvaganapathy PR, Canadian Critical Care Translational Biology Group (2021) Single step separation and concentration of biomarker proteins using agarose based miniaturized isoelectric gates for point of care diagnostics. Sens Actuators B: Chemical 330:129265

    Article  CAS  Google Scholar 

  26. Damodara S, Arora J, Dwivedi DJ, Liaw PC, Fox-Robichaud AE, Selvaganapathy PR, Canadian Critical Care Translational Biology Group (2022) Microfluidic device for single step measurement of protein C in plasma samples for sepsis prognosis. Lab on a Chip 22(13):2566–2577

    Article  CAS  PubMed  Google Scholar 

  27. Shahriari S, Selvaganapathy PR (2022) Integration of hydrogels into microfluidic devices with porous membranes as scaffolds enables their drying and reconstitution. Biomicrofluidics 16(5):054108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Damodara S, Shahriari S, Wu W-I, Rezai P, Hsu H-H, Selvaganapathy R (2021) Materials and methods for microfabrication of microfluidic devices. In: Microfluidic devices for biomedical applications. Woodhead Publishing, Elsevier, pp 1–78 

  29. Shahriari S, Patel V, Selvaganapathy PR (2023) Xurography as a tool for the fabrication of microfluidic devices. J Micromech Microeng 33:083002

  30. Paul J, Veenstra TD (2022) Separation of serum and plasma proteins for in-depth proteomic analysis. Separations 9(4):89

    Article  CAS  Google Scholar 

  31. De M, Rana S, Akpinar H, Miranda OR, Arvizo RR, Bunz UH, Rotello VM (2009) Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nat Chem 1(6):461–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Monteiro RC, Halbwachs-Mecarelli L, Roque-Barreira MC, Noel L-H, Berger J, Lesavre P (1985) Charge and size of mesangial IgA in IgA nephropathy. Kidney Int 28(4):666–671

    Article  CAS  PubMed  Google Scholar 

  33. Barrett AJ, Brown MA, Sayers CA (1979) The electrophoretically ‘slow’and ‘fast’forms of the α2-macroglobulin molecule. Biochem J 181(2):401–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prin C, Bene MC, Gobert B, Montagne P, Faure GC (1995) Isoelectric restriction of human immunoglobulin isotypes. Biochim Biophys Acta (BBA)-General Subj 1243(2):287–289

    Article  Google Scholar 

  35. Adler A, Manivel VA, Fromell K, Teramura Y, Ekdahl KN, Nilsson B (2022) A robust method to store complement C3 with superior ability to maintain the native structure and function of the protein. Front Immunol 13:891994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ayyub A, Saleem M, Musharraf SG, Naz M, Tariq A, Hashmi N (2015) Mass spectrometric identification, characterization and validation of the haptoglobin β-chain protein as a lung cancer serum biomarker. Mol Med Rep 12(3):3755–3762

    Article  CAS  PubMed  Google Scholar 

  37. Leeman M, Choi J, Hansson S, Storm MU, Nilsson L (2018) Proteins and antibodies in serum, plasma, and whole blood—size characterization using asymmetrical flow field-flow fractionation (AF4). Anal Bioanal Chem 410:4867–4873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fullarton J, Kenny A (1970) A rapid system for preparative electrophoresis depending on isoelectric buffers of low conductivity. Biochemical Journal 116(1):147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dötsch V, Withers RS (2005) Low-conductivity buffers for magnetic resonance measurements. U.S. Patent 6,958,244

  40. Wiig H, Kolmannskog O, Tenstad O, Bert JL (2003) Effect of charge on interstitial distribution of albumin in rat dermis in vitro. J Physiol 550(2):505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ravi Selvaganapathy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahriari, S., Damodara, S. & Selvaganapathy, P.R. Isoelectric trapping and discrimination of histones from plasma in a microfluidic device using dehydrated isoelectric gate. Microchim Acta 191, 131 (2024). https://doi.org/10.1007/s00604-024-06223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06223-5

Keywords

Navigation